The Effect of Uniform Blowing on the Flow Past a Circular Cylinder

2002 ◽  
Vol 124 (2) ◽  
pp. 452-464 ◽  
Author(s):  
Lionel Mathelin ◽  
Franc¸oise Bataille ◽  
Andre´ Lallemand

This work describes blowing through the whole surface of a porous circular cylinder for the control of the near wake dynamics and the thermal protection of the surface. The flow past the cylinder is numerically studied and the blowing is modeled. Comparisons with experimental data are used for validation. It is shown that the blowing tends to increase the boundary layer thickness, to promote its separation and to decrease the viscous drag induced. Similarly, the convective heat transfer is lowered, and in the case of a nonisothermal blowing, the surface is very effectively protected from the hot free stream flow. The near wake is also affected. The vortex shedding frequency is shown to decrease when blowing occurs and a qualitative model is presented to identify the different mechanisms.

1982 ◽  
Vol 120 ◽  
pp. 185-197 ◽  
Author(s):  
A. S. M. Maclennan ◽  
J. H. Vincent

An experimental investigation has been carried out into the nature of the transport of airborne material in the near aerodynamic wakes of bluff bodies with simple shapes. The main attention was focused on the essential differences existing between axi- symmetric flows (as about disks) and two-dimensional flows (as about rectangular long thin flat plates). Measurements were made for such bodies of the near-wake residence time of injected small particles, along with other and more familiar near- wake properties such as the vortex-shedding frequency and base pressure. It was concluded for disks that the transport of material into and out of the near-wake region is dominated by turbulent diffusion, and is strongly influenced by free-stream turbulence, especially for free-stream turbulence whose length scale is substantially smaller than the disk diameter. For rectangular flat plates, transport is dominated by the periodic shedding of vortices, and to only a secondary extent by turbulent motions, and is not strongly influenced by free-stream turbulence.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag and lift forces over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies varying between 0.25 and 5 times the natural shedding frequency fs were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. The first drop in the drag coefficient, i.e. near f = fs, is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder. This change in vortex shedding pattern manifests itself as a departure from symmetrical shedding, and in a non-zero mean lift coefficient value. The second drop, i.e. near f = 2 fs, has similar characteristics, except that the mean lift coefficient remains at zero.


Author(s):  
Md. Mahbub Alam ◽  
An Ran ◽  
Yu Zhou

This paper presents cross-flow induced response of a both-end-spring-mounted circular cylinder (diameter D) placed in the wake of a rigid circular cylinder of smaller diameter d. The cylinder vibration is constrained to the transverse direction. The cylinder diameter ratio d/D and spacing ratio L/d are varied from 0.2 to 1.0 and 1.0 to 5.5, respectively, where L is the distance between the center of the upstream cylinder to the forward stagnation point of the downstream cylinder. A violent vibration of the cylinder is observed for d/D = 0.2 ∼ 0.8 at L/d = 1.0, for d/D = 0.24 ∼ 0.6 at 1.0 < L/d ≤ 2.5, for d/D = 0.2 ∼ 0.4 at 2.5 < L/d ≤ 3.5, and for d/D = 0.2 at 3.5 < L/d ≤ 5.5, but not for d/D = 1.0. A smaller d/D generates vibration for a longer range of L/d. The violent vibration occurs at a reduced velocity Ur (=U∞/fnD, where U∞ is the free-stream velocity and fn the natural frequency of the cylinder system) beyond the vortex excitation regime (Ur ≥ 8) depending on d/D and L/d. Once the vibration starts to occur, the vibration amplitude increases rapidly with increasing Ur. It is further noted that the flow behind the downstream cylinder is characterized by two predominant frequencies, corresponding to the cylinder vibration frequency and the natural vortex shedding frequency of the cylinder, respectively. While the former persists downstream, the latter vanishes rapidly.


2020 ◽  
Vol 68 (5) ◽  
pp. 328-338
Author(s):  
M.G. Arun ◽  
T.J.S. Jothi

The present study experimentally investigates the aerodynamic noise from the flow past a fixed circular cylinder. The cylinders considered for the study have the diameters (d) in the range of 6 to 25 mm while its span length (L) is constant, which is 300 mm. The free stream velocity is varied up to 50 m/s, and the corresponding Reynolds number (based on d) varies up to 8.3 104, thus maintaining the flow past the cylinder in the subcritical regime. The discrete narrowband frequency tones depicting the aeolian tones are noted in the spectra. The results showed that the aeolian tone frequency decreases with an increase in the cylinder diameter and ceases to exist beyond the diameter of 15 mm. The corresponding Strouhal number of these tones is found to be in the range of 0.18 to 0.21, which is in congruence with the vortex shedding frequency in the subcritical regime. The maximum overall sound pressure level for cylinders having tonal noise is higher by around 30 dB compared to the background noise. Directivity studies show that the noise level is higher along the perpendicular direction of the jet flow. A sixth power Mach number scaling of the acoustic spectra shows a good collapse of the acoustic tonal amplitude.


2005 ◽  
Vol 127 (6) ◽  
pp. 1085-1094 ◽  
Author(s):  
Alan L. Kastengren ◽  
J. Craig Dutton

The near wake of a blunt-base cylinder at 10° angle-of-attack to a Mach 2.46 free-stream flow is visualized at several locations to study unsteady aspects of its structure. In both side-view and end-view images, the shear layer flapping grows monotonically as the shear layer develops, similar to the trends seen in a corresponding axisymmetric supersonic base flow. The interface convolution, a measure of the tortuousness of the shear layer, peaks for side-view and end-view images during recompression. The high convolution for a septum of fluid seen in the middle of the wake indicates that the septum actively entrains fluid from the recirculation region, which helps to explain the low base pressure for this wake compared to that for a corresponding axisymmetric wake.


2004 ◽  
Vol 126 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou ◽  
X. W. Wang ◽  
W. Jin

The local time-averaged temperature θs¯ and its fluctuating component θs on the surface of a heated circular cylinder immersed in a cylinder near-wake were measured using a fiber-optic Bragg grating (FBG) sensor. Three cylinder center-to-center spacing, i.e., L/d=5.20, 2.50, and 1.18, were investigated. In order to validate the FBG sensor measurement, a thermocouple and a single hot-wire were employed to measure θs¯ on the heated cylinder and streamwise fluctuating velocity u in the near-wake of the downstream cylinder, respectively. The FBG sensor measurement of θs¯ is in good agreement with that simultaneously obtained by the thermocouple. The measured θs is closely correlated to the hot-wire measurement; the θs-spectrum exhibits a pronounced peak at the vortex shedding frequency, as identified in Eu, for each L/d. The results suggest that the FBG sensor can be used to measure reliably both time-averaged and fluctuating temperatures. The heat transfer characteristics of the heated cylinder are examined for different L/d and further compared with the case of an isolated cylinder.


2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Mohamed Aissa ◽  
Ahcène Bouabdallah ◽  
Hamid Oualli

In the current paper, the three-dimensional air flow evolution around a circular cylinder is studied. The main aim is to control the flow field upstream and downstream of a circular cylinder by means of radial deformation. Within a particular step, one focuses on the response of the topological structures, which is developing in the cylinder near wake to applied pulsatile motion. Furthermore, a special care is considered to the aerodynamics forces behavior in adjusting the applied controlling strategy. The used controlling frequency range extends from f = 1fn = 17 Hz to f = 6fn = 102.21 Hz, which corresponds to a series of multiharmonic frequency varying from one to six times the natural vortex shedding frequency (VSF) in none forced wake. Throughout this work, the forcing amplitude is fixed at 16% of cylinder diameter and the Reynolds number as Re = 550. Through Fluent computational fluid dynamics (CFD) code and Matlab simulations, the obtained results showed a good accordance with the calculated ones.


Sign in / Sign up

Export Citation Format

Share Document