Biaxial Residual Stress Mapping for a Dissimilar Metal Welded Nozzle

Author(s):  
Michael R. Hill ◽  
Mitchell D. Olson ◽  
Adrian T. DeWald

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a nozzle mockup having two welds, one a dissimilar metal (DM) weld and the other a stainless steel (SS) weld. The mockup is cylindrical, designed to represent a pressurizer surge nozzle of a nuclear pressurized water reactor (PWR), and was fabricated for Phase 2a of the NRC/EPRI welding residual stress round robin. The mockup has a nickel alloy DM weld joining a SS safe end to a low-alloy steel cylinder and stiffening ring, as well as a SS weld joining the safe end to a section of pipe. The biaxial mapping experiments follow the approach described earlier, in PVP2012-78885 and PVP2013-97246, and comprise a series of experimental steps and a computation to determine a two-dimensional map of biaxial (axial and hoop) residual stress near the SS and DM welds. Specifically, the biaxial stresses are a combination of a contour measurement of hoop stress in the cylinder, slitting measurements of axial stress in thin slices removed from the cylinder wall, and a computation that determines the axial stress induced by measured hoop stress. At the DM weld, hoop stress is tensile near the OD (240 MPa) and compressive at the ID (−320 MPa), and axial stress is tensile near the OD (370 MPa) and compressive near the mid-thickness (−230 MPa) and ID (−250 MPa). At the SS weld, hoop stress is tensile near the OD (330 MPa) and compressive near the ID (−210 MPa), and axial stress is tensile at the OD (220 MPa) and compressive near mid-thickness (−225 MPa) and ID (−30 MPa). The measured stresses are found to be consistent with earlier work in similar configurations.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Michael R. Hill ◽  
Mitchell D. Olson ◽  
Adrian T. DeWald

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a nozzle mockup having two welds, one a dissimilar metal (DM) weld and the other a stainless steel (SS) weld. The mockup is cylindrical, designed to represent a pressurizer surge nozzle of a nuclear pressurized water reactor (PWR), and was fabricated as part of a weld residual stress measurement and finite-element (FE) modeling round-robin exercise. The mockup has a nickel alloy DM weld joining an SS safe end to a low-alloy steel cylinder and stiffening ring, as well as an SS weld joining the safe end to a section of SS pipe. The biaxial mapping experiments follow an approach described earlier, in PVP2012-78885 and PVP2013-97246, and comprise a series of experimental steps and a computation to determine a two dimensional map of biaxial (axial and hoop) residual stress near the SS and DM welds. Specifically, the biaxial stresses are a combination of a contour measurement of hoop stress in the cylinder, slitting measurements of axial stress in thin slices removed from the cylinder wall, and a computation that determines the axial stress induced by measured hoop stress. At the DM weld, hoop stress is tensile near the OD (240 MPa) and compressive at the ID (−320 MPa), and axial stress is tensile near the OD (370 MPa) and compressive near the midthickness (−230 MPa) and ID (−250 MPa). At the SS weld, hoop stress is tensile near the OD (330 MPa) and compressive near the ID (−210 MPa), and axial stress is tensile at the OD (220 MPa) and compressive near midthickness (−225 MPa) and ID (−30 MPa). The measured stresses are found to be consistent with earlier work in similar configurations.


Author(s):  
Michael R. Hill ◽  
Mitchell D. Olson

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a dissimilar metal welded nozzle typical of a nuclear pressurized water reactor (PWR). The present experimental work follows on the numerical analysis reported earlier, in PVP2012-78885. The measurement subject is a cylindrical nozzle, removed from a PWR pressure vessel, having a nickel alloy weld joining a stainless steel safe end to a low-alloy steel vessel. Biaxial residual stress was determined in a series of experimental steps using strain gage measurements, the contour method, and slitting. Confirmatory measurements were also performed (including digital image correlation and neutron diffraction). The paper includes descriptions of the experimental steps, data reduction, and residual stress results, along with a comparison between measurements and output from a weld simulation. The measured hoop stress in the weld region is tensile near the OD (300 MPa) and compressive near the ID (−400 MPa); the measured axial stress is tensile near the OD (150 MPa) and compressive near the ID (−150 MPa).


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Akira Maekawa ◽  
Atsushi Kawahara ◽  
Hisashi Serizawa ◽  
Hidekazu Murakawa

Primary water stress corrosion cracking (PWSCC) phenomenon in dissimilar metal welds is one of the safety issues in ageing pressurized water reactor (PWR) piping systems. It is well known that analysis accuracy of cracking propagation due to PWSCC depends on welding residual stress conditions. The U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) carried out an international round robin validation program to evaluate and quantify welding residual stress analysis accuracy and uncertainty. In this paper, participation results of the authors in the round robin program were reported. The three-dimensional (3D) analysis based on a fast weld simulation using an iterative substructure method (ISM), was shown to provide accurate results in a high-speed computation. Furthermore, the influence of different heat source models on analysis results was investigated. It was demonstrated that the residual stress and distortion calculated using the moving heat source model were more accurate.


Author(s):  
Tae-Kwang Song ◽  
Ji-Soo Kim ◽  
Chang-Young Oh ◽  
Hong-Yeol Bae ◽  
Jun-Young Jeon ◽  
...  

This paper provides the through-thickness welding residual stress profile in dissimilar metal nozzle butt welds of pressurized water reactors. For systematic investigations of the effects of geometric variables, i.e. the thickness and the radius of the nozzle and the length of the safe end, on welding residual stresses, idealized shape of nozzle is proposed and elastic-plastic thermo-mechanical finite element analyses are conducted. Through-wall welding residual stress profiles for dissimilar metal nozzle butt welds are proposed, which take a modified form of existing welding residual stress profiles developed for austenitic pipe butt weld in R6 code.


Author(s):  
D. Rudland ◽  
A. Csontos ◽  
F. Brust ◽  
T. Zhang

With the recent occurrences of primary water stress corrosion cracking (PWSCC) at nickel-based dissimilar metal welds (specifically Alloy 82/182 welds) in the nation’s pressurized water reactors (PWRs), the commercial nuclear power industry has been proposing a number of mitigation strategies for dealing with the problem. Some of these methods include Mechanical Stress Improvement Process (MSIP), Full and Optimized Structural Weld Overlay (FSWOL, OWOL) and Inlay and Onlay welds. All of these methods provide either a reduction in the ID residual stress field, (MSIP and WOL) and/or apply a corrosion resistant layer to stop or retard a leak path from forming (WOL, Inlay, Onlay). For the larger bore pipe, i.e. hot leg outlet nozzle, methods such as FSWOL become cost prohibitive due to the amount of weld metal that must be deposited. Therefore, inlay welds are being proposed since only a small layer (3 weld beads) needs to be deposited on the inside surface of the pipe. Currently the ASME code is developing Code Case N-766 ‘Nickel Alloy Reactor Coolant Inlay and Cladding for Repair or Mitigation of PWR Full Penetration Circumferential Nickel Alloy Welds in Class 1 Items.’ This code case is documenting the procedures for applying these inlay welds. As part of a confirmatory analysis, the US NRC staff and its contractor, Engineering Mechanics Corporation of Columbus, (Emc2) have conducted both welding residual stress and flaw evaluation analyses to determine the effectiveness of inlay welds as a mitigative technique. This paper presents the ongoing results from this effort. Using several large bore geometries, detailed welding simulation analyses were conducted on the procedures set forth in draft Code Case N-766. Effects of weld repairs and temper bead welding are included. Using these residual stress results, PWSCC growth analyses were conducted using simulated crack growth rates as a function of chromium content to estimate the time to leakage and rupture for small initial flaws in the inlay. The paper concludes with discussions on the effectiveness of inlays based on these analyses.


Author(s):  
Adrian T. DeWald ◽  
Michael R. Hill ◽  
Eric Willis

Welding residual stresses can significantly impact the performance of structural components. Tensile residual stresses are of particular concern due to their ability to cause significant degradation to the PWSCC resistance of structural materials. The contour method is a residual stress measurement technique capable of generating two dimensional maps of residual stress, which is particularly useful when applied to welds due to the complex residual stress distributions that generally result. The two-dimensional capability of the contour method enables detailed visualization of complex weld residual stress fields. This data can be used to identify locations and magnitude of tensile residual stress hot-spots. This paper provides a summary of the contour method and presents detailed results of contour method measurements made on the dissimilar metal weld region of pressurizer relief nozzles removed from the cancelled WNP-3 plant in the United States as part of the NRC/EPRI weld residual stress (WRS) program [1].


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7463
Author(s):  
Hongjie Zhang ◽  
Tao Han ◽  
Yong Wang ◽  
Qian Wu

The process optimization and structural safety improvement of the in-service repair welding of the X80 pipeline are very important. In this paper, the temperature, microstructure, and stress distribution were analyzed using the combination of TMM (thermal-metallurgical-mechanical) simulations and the corresponding verification experiments. The effects of the sleeve material strength and the fillet weld size were discussed. The results showed that the fillet weld zone was mainly composed of ferrite and bainite when the material of the sleeve pipe was Q345B. Furthermore, the sleeve pipe’s HAZ (heat affected zone) was dominated by lath martensite, lath bainite, and granular bainite. Moreover, granular bainite and a small amount of ferrite were found in the HAZ of the X80 pipe. It was found that, as the fillet weld size increased, the welding residual stress distribution became more uniform. The hoop stress at weld toe reduced from ~860 MPa of case A to ~680 MPa of case E, and the axial stress at weld toe reduced from ~440 MPa of case A to ~380 MPa of case E. From the viewpoint of welding residual stress, fillet weld size was suggested to be larger than 1.4T. The stress concentration and the stress distribution showed a correlation with the cracking behavior. Weld re-solidification ripples on the weld surface and weld ripples between welding passes or near the weld toe could cause stress concentration and the corresponding crack initiation. Furthermore, when the material of the sleeve pipe changed from Q345B to X80, the high-level tensile stress zone was found to be enlarged. The hoop stress at weld toe increased from ~750 to ~800 MPa, and the axial stress at weld toe increased from ~500 to ~600 MPa. After implementing the new sleeve repair welding process where X80 replaces the material of sleeve pipe, the cracking risk in sleeve pipe will improve. From the perspective of the welding residual stress, it was concluded that the fillet weld size reduction and the sleeve material strength improvement are harmful to in-service welded structures’ safety and integrity.


Author(s):  
Guian Qian ◽  
V. F. González-Albuixech ◽  
Markus Niffenegger

One potential challenge to the integrity of a reactor pressure vessel (RPV) of a pressurized water reactor is posed by a pressurized thermal shock (PTS), which is associated with severe cooling of the RPV followed by its repressurization. PTS transients lead to high tensile circumferential and axial stresses in the RPV wall. If the stress intensity factor (SIF) is large enough, a critical crack may grow. Thus, the RPV has to be assessed against cleavage fracture. In this paper, two kinds of embedded cracks, i.e. semielliptical and elliptical crack with depth of 17 mm and length of 102 mm are considered. The extended finite element method (XFEM) is used to model such postulated cracks. The embedded crack with tip in the cladding/base interface causes a high KI. This is due to the stress discontinuities at the interface between the materials. In the FAVOR (probabilistic fracture mechanics code) calculation, for such cracks the closest point to the inner surface is calculated in order to be conservative. However, due to the highly ductile cladding material, it is unlikely for the embedded crack to propagate through the cladding. Thus, it is more appropriate to consider the outer surface point of the crack front. The effect of welding residual stress and cladding/base interface residual stress on the crack driving force is studied. Surface cracks are assumed in the study of residual stresses. Results show that considering realistic welding residual stresses may increase KI by about 5 MPa·m0.5, while the cladding/base interface residual stress has a negligible effect on KI. The reason is that the cladding residual stress is only localized to the interface and it decreases significantly through the vessel wall.


Sign in / Sign up

Export Citation Format

Share Document