Prediction of Cladding Temperatures Within a Used Nuclear Fuel Transfer Cask Filled With Rarefied Helium

Author(s):  
Ernesto T. Manzo ◽  
Rachel Green ◽  
Mustafa Hadj Nacer ◽  
Miles Greiner

During the used nuclear fuel vacuum drying process, helium is evacuated to pressures as low as 70 Pa, to promote water vaporization and removal. At these low pressures the gas is rarefied to the extent that there is a temperature jump thermal resistance between the surface and gas. This occurs when the mean free path of a molecule becomes a comparable to the characteristic length of a system. In order to correctly apply this jump model to a nuclear transfer cask, a two dimensional model of parallel plates and concentric cylinders were created using ANSYS/Fluent package. Heat generation was plotted against a variety of relevant pressures. The results in these simple geometries are compared to kinetic model calculations, performed by other investigators, to determine the appropriate collision diameters to use in rarefied helium gas simulations within complex geometries. A two dimensional mesh of a transfer cask containing 24 pressurized water reactor used fuel assemblies is then constructed, and the rarefied gas model was implemented in the helium-filled regions between the fuel and basket support structures. Steady state simulations with a fuel heat generation rate of 710 W/m/assemble shows that the cladding is measurably hotter when the helium gas pressure is reduced from atmospheric conditions ∼105 Pa to 500 Pa. The heat generation rate that brings the peak cladding temperature to a hydride dissolution temperature of 400°C is as much as 10% lower when the gas is at 500 Pa than under atmospheric conditions.

Author(s):  
Megan Higley ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner

Abstract In this work, a two-dimensional (2D) geometrically-accurate model of the TN-32 cask is generated in ANSYS/Fluent to investigate the effect of backfill gases and their pressures on the peak cladding temperature (PCT). This model is similar to the cask being used in high-burnup (HBU) spent fuel data project lead by the Electric Power Research Institute (EPRI). Helium, nitrogen, argon, and water vapor fill gases are investigated at pressures ranging from atmospheric (∼105 Pa) to 100 Pa. Steady-state computational fluid dynamics (CFD) simulations that include the effect of gas rarefaction (temperature-jump) at the gas-solid interfaces are conducted. The PCT as a function of heat generation rate and pressure is reported as well as the heat generation rate that brings the cladding temperature to the radial hydride formation limit. The results show that there are competing effects between the temperature-jump and the thermal conductivity of the gas to increase the fuel rods’ temperature. The low pressures increased the PCT, with the increase being most significant for the helium backfill.


Author(s):  
Feng Xu ◽  
Qiusheng Liu ◽  
Satoshi Kawaguchi ◽  
Makoto Shibahara

Abstract The blanket modules of first wall need bear tremendous heat flux due to the very high temperature of plasma in the nuclear fusion reactor. Therefore, it is significant to clarify the knowledge of transient heat transfer process for helium gas flowing in the tubes installed in the blanket modules. In this research, the transient heat transfer process of turbulent forced convection for helium gas flowing in a horizontal minichannel was experimentally investigated. The test tube made of platinum with the inner diameter of 1.8 mm, the wall thickness of 0.1 mm and the effective length of 90 mm was heated by a direct current from power source. The heat generation rate of the test tube, Q̇, was raised with an exponential function, Q̇ = Q0 exp(t/τ), where Q0 is the initial heat generation rate, t is time, and τ is e-folding time of heat generation rate. The heat generation rates of the test tube were controlled and measured by a heat input control system. The flow rates were adjusted by the bypass of gas loop and measured by the turbine flow meter. The experiment was conducted under the e-folding time of heat generation rate ranged from 40 ms to 15 s. Based on experimental data, it is obvious that the heat flux and temperature difference between surface temperature of test tube and bulk temperature of helium gas increased with the exponentially increasing of heat generation rate. At the same flow velocity, the heat transfer coefficients approached constant values when the e-folding time is longer than about 1 s (quasi-steady state), but increased with a decrease of e-folding time when the e-folding time is smaller than about 1 s (transient state). The heat transfer coefficients increased with the increase in flow velocities but showed less dependent on flow velocities at shorter e-folding time. Furthermore, the Nusselt number under quasi-steady and transient condition was affected by the Reynolds number and the Fourier number.


Author(s):  
Megan Higley ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner

In this work, a geometrically-accurate two-dimensional (2D) computational fluid dynamic (CFD) model of a used nuclear fuel cask, that can contain up to 32 pressurized water reactor (PWR) used nuclear fuel (UNF) assemblies, is constructed. This model is similar to the TN-32 cask employed in the ongoing high-burnup (HBU) Spent Fuel Data Project lead by the Electric Power Research Institute (EPRI). This model is used to predict the peak cladding temperature under vacuum drying conditions. Due to the symmetry of the cask, only one-eighth of the cross-section is modeled. Steady-state simulations that include the temperature-jump boundary conditions at the gas-solid interfaces are performed for different heat generation rates in the fuel regions and a range of dry helium pressures, from ∼105 to 100 Pa. These simulations include conduction within solid-gas regions and surface-to-surface radiation across all gas regions. The peak cladding temperatures are reported for various heat generation rates and rarefaction conditions, along with the maximum allowable heat generation that brings the cladding temperatures to the radial hydride formation limit. The results showed that the decrease of helium pressure significantly increased the temperature of the cladding material compared to the atmospheric pressure condition.


Author(s):  
Qiusheng Liu ◽  
Makoto Shibahara ◽  
Katsuya Fukuda

Transient heat transfer coefficients for helium gas flowing over a horizontal plate (ribbon) were measured under wide experimental conditions. The platinum plate with a thickness of 0.1 mm was used as test heater and heated by electric current. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 50 ms to 17 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The dependence of transient heat transfer on the gas flowing velocity becomes weaker when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data.


Author(s):  
Zhou Zhao ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

This study is aimed to clarify transient heat transfer process between the surface of solid and the neighboring helium gas in Very High Temperature Reactor (VHTR) or intermediate heat exchanger (IHX). In this paper a series of platinum heaters with different widths under different pressures inside a circular channel have been tested for forced convection flow. The heat generation rate of the platinum heater was increased with a function of Q0exp(t/τ) (where t is time and τ is period of heat generation rate or e-fold time). The heaters were platinum plates with a thickness of 0.1 mm and widths of 2 mm, 4 mm and 6 mm. In the present study, the heat flux, surface temperature, and transient heat transfer coefficients were measured for helium gas passing by horizontal plates under wide experimental conditions such as velocities, pressures and periods of heat generation rate. It was clarified that the heat transfer coefficient approaches the quasi-steady-state when the period is more than around 1 s and it becomes higher when the period shorter than around 1 s. Based on the experimental data, empirical correlations for both quasi-steady-state heat transfer and transient state one at various plate-widths were obtained. It was also found that the heat transfer coefficient becomes higher with the increases of gas pressure.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Krishna Kumar Kamichetty ◽  
Venkata Venigalla ◽  
Miles Greiner

In the current work, a geometrically-accurate two-dimensional model is developed of an isolated fuel assembly within isothermal compartment walls. Finite difference thermal simulations are performed to determine the cladding temperature for a range of compartment wall temperatures and assembly heat generation rates. The results for zero-heat-generation-rate are used to determine a temperature-dependent effective thermal conductivity of the fuel region. The effective volumetric specific heat of the region is determined from a lumped capacity model. These effective properties are then applied to a two-dimensional model of a legal weight truck cask with homogenized (smeared) fuel regions. Steady-state normal conditions of transport simulations are performed for a range of fuel heat generation rates. The generation rate that brings the zircaloy cladding to its radial-hydride formation temperature, predicted by the homogenized model, is greater than that determined by simulations that employ an accurate-geometry fuel region model. Transient regulator fire accident simulations are then performed for a range of fire durations. The critical fire duration is defined as the minimum that brings the fuel cladding to its burst-rupture temperature. That duration is found to decrease as the fuel heat generation rate increases. The critical durations predicted by the homogenized fuel-region model are shorter than those predicted by the accurate-geometry model.


Author(s):  
Xiaoli Yu ◽  
Qichao Wu ◽  
Rui Huang ◽  
Xiaoping Chen

Abstract Heat generation measurements of the lithium-ion battery are crucial for the design of the battery thermal management system. Most previous work uses the accelerating rate calorimeter (ARC) to test heat generation of batteries. However, utilizing ARC can only obtain heat generation of the battery operating under the adiabatic condition, deviating from common operation scenarios with heat dissipation. Besides, using ARC is difficult to measure heat generation of the high-rate operating battery because the battery temperature easily exceeds the maximum safety limit. To address these problems, we propose a novel method to obtain heat generation of cylindrical battery based on core and surface temperature measurements and select the 21700 cylindrical battery as the research object. Based on the method, total heat generation at 1C discharge rate under the natural convection air cooling condition in the environmental chamber is about 3.2 kJ, and the average heat generation rate is about 0.9 W. While these two results measured by ARC are about 2.2 kJ and 0.6 W. This gap also reflects that different battery temperature histories have significant impacts on heat generation. In addition, using our approach, total heat generation at 2C discharge rate measured in the environmental chamber is about 5.0 kJ, with the average heat generation rate being about 2.8 W. Heat generation results obtained by our method are approximate to the actual battery operation and have advantages in future applications.


Sign in / Sign up

Export Citation Format

Share Document