Temperature Prediction of a Used Nuclear Fuel Cask With Different Gas Backfills

Author(s):  
Megan Higley ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner

Abstract In this work, a two-dimensional (2D) geometrically-accurate model of the TN-32 cask is generated in ANSYS/Fluent to investigate the effect of backfill gases and their pressures on the peak cladding temperature (PCT). This model is similar to the cask being used in high-burnup (HBU) spent fuel data project lead by the Electric Power Research Institute (EPRI). Helium, nitrogen, argon, and water vapor fill gases are investigated at pressures ranging from atmospheric (∼105 Pa) to 100 Pa. Steady-state computational fluid dynamics (CFD) simulations that include the effect of gas rarefaction (temperature-jump) at the gas-solid interfaces are conducted. The PCT as a function of heat generation rate and pressure is reported as well as the heat generation rate that brings the cladding temperature to the radial hydride formation limit. The results show that there are competing effects between the temperature-jump and the thermal conductivity of the gas to increase the fuel rods’ temperature. The low pressures increased the PCT, with the increase being most significant for the helium backfill.

Author(s):  
Saeed Tiari ◽  
Mahboobe Mahdavi ◽  
Kinjalkumar Chauhan ◽  
Davide Piovesan

A numerical analysis is conducted to study the thermal behavior of human healthy and cancerous tissues during magnetic nanoparticle hyperthermia treatment. A transient multi-layer two-dimensional model is developed using commercial CFD package, ANSYS-FLUENT 18.1. The impact of therapeutic heat generation rate and various tissue cooling conditions on the thermal response of the tumor and normal tissues are investigated. It was found that the tumor temperature is not affected by different cooling conditions while the temperature of healthy tissues around tumor is significantly impacted. The results also demonstrated that the effective tumor temperature can be achieved in approximately ten minutes by using therapeutic heat generation rate of 150 kW/m3 in all three cooling conditions.


Author(s):  
Ernesto T. Manzo ◽  
Rachel Green ◽  
Mustafa Hadj Nacer ◽  
Miles Greiner

During the used nuclear fuel vacuum drying process, helium is evacuated to pressures as low as 70 Pa, to promote water vaporization and removal. At these low pressures the gas is rarefied to the extent that there is a temperature jump thermal resistance between the surface and gas. This occurs when the mean free path of a molecule becomes a comparable to the characteristic length of a system. In order to correctly apply this jump model to a nuclear transfer cask, a two dimensional model of parallel plates and concentric cylinders were created using ANSYS/Fluent package. Heat generation was plotted against a variety of relevant pressures. The results in these simple geometries are compared to kinetic model calculations, performed by other investigators, to determine the appropriate collision diameters to use in rarefied helium gas simulations within complex geometries. A two dimensional mesh of a transfer cask containing 24 pressurized water reactor used fuel assemblies is then constructed, and the rarefied gas model was implemented in the helium-filled regions between the fuel and basket support structures. Steady state simulations with a fuel heat generation rate of 710 W/m/assemble shows that the cladding is measurably hotter when the helium gas pressure is reduced from atmospheric conditions ∼105 Pa to 500 Pa. The heat generation rate that brings the peak cladding temperature to a hydride dissolution temperature of 400°C is as much as 10% lower when the gas is at 500 Pa than under atmospheric conditions.


Author(s):  
Xiaoli Yu ◽  
Qichao Wu ◽  
Rui Huang ◽  
Xiaoping Chen

Abstract Heat generation measurements of the lithium-ion battery are crucial for the design of the battery thermal management system. Most previous work uses the accelerating rate calorimeter (ARC) to test heat generation of batteries. However, utilizing ARC can only obtain heat generation of the battery operating under the adiabatic condition, deviating from common operation scenarios with heat dissipation. Besides, using ARC is difficult to measure heat generation of the high-rate operating battery because the battery temperature easily exceeds the maximum safety limit. To address these problems, we propose a novel method to obtain heat generation of cylindrical battery based on core and surface temperature measurements and select the 21700 cylindrical battery as the research object. Based on the method, total heat generation at 1C discharge rate under the natural convection air cooling condition in the environmental chamber is about 3.2 kJ, and the average heat generation rate is about 0.9 W. While these two results measured by ARC are about 2.2 kJ and 0.6 W. This gap also reflects that different battery temperature histories have significant impacts on heat generation. In addition, using our approach, total heat generation at 2C discharge rate measured in the environmental chamber is about 5.0 kJ, with the average heat generation rate being about 2.8 W. Heat generation results obtained by our method are approximate to the actual battery operation and have advantages in future applications.


Author(s):  
Dilesh Maharjan ◽  
Mustafa Hadj-Nacer ◽  
Miles Greiner

During vacuum drying of used nuclear fuel canister, helium pressure is decreased to as low as 67 Pa to promote evaporation and removal of water remaining in the canister following draining operation. At low pressures associated with vacuum drying, there is a temperature jump (thermal resistance) between the solid surfaces and helium in contact with them. This temperature jump increases as the pressure decreases (rarefied condition), which contributes to the fuel assembly’s temperature increase. It is important to keep the temperature of the fuel assemblies below 400°C during vacuum drying to ensure their safety for transport and storage. In this work, an experimental apparatus consisting of a 7×7 array of electrically heated rods maintained between two spacer plates and enclosed inside a square cross-section stainless steel pressure vessel is constructed to evaluate the temperature of the heater rods at different pressures. This geometry is relevant to a BWR fuel assembly between two consecutive spacer plates. Thermocouples are installed in each of the 49 heater rods, spacer plates and enclosure walls. They provide a complete temperature profile of the experiment. Different pressures and heat generation relevant to vacuum drying conditions are tested. The results showed that the maximum temperature of the heater rods increases as the pressure decreases. The results from these experiments will be compared to computational fluid dynamics simulations in a separate work.


Author(s):  
Makoto Shibahara ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

Forced convection transient heat transfer coefficients have been measured for nitrogen gas flowing over a twisted heater due to exponentially increasing heat inputs (Q0exp(t/τ)). And then, the effect of heater configuration on transient heat transfer by a twisted heater has been investigated comparing to that of the plate heater. In the experiment, the platinum ribbon with a thickness of 0.1 mm and a width of 4.0 mm was used as a test heater. For heat transfer enhancements in single-phase flow, it was twisted at the central part of the heater with an angle of 90 degrees with respect to the upper part of the heater. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocity ranged from 1 to 4 m/s for the gas temperatures of 313K. The periods of heat generation rate ranged from 46 ms to 17 s. The surface temperature difference and heat flux increased exponentially as the heat generation rate increased with the exponential function. The heat transfer coefficients for twisted heater have been compared to those of the plate heater. They were 24 % higher than those of the plate one. The geometric effect (twisted effect) of heater in this study showed an enhancement on the heat transfer coefficient. It was considered that the heat transfer coefficients are affected by the change in the flow due to swirling flow on the twisted heater. Finally, the empirical correlations for quasi-steady-state heat transfer and transient one have been obtained based on the experimental data.


Sign in / Sign up

Export Citation Format

Share Document