High Temperature Low Cycle Fatigue Behaviour of MarBN at 600 °C

Author(s):  
Richard A. Barrett ◽  
Eimear O’Hara ◽  
Padraic E. O’Donoghue ◽  
Sean B. Leen

The changing face of fossil fuel power generation is such that next generation plants must be capable of operating under (i) flexible conditions to accommodate renewal sources of energy and (ii) higher steam pressures and temperatures to improve plant efficiency. These changes result in increased creep and fatigue degradation of plant components. The key limiting factor to achieving more efficient, flexible plant operation is the development of advanced materials capable of operating under such conditions. MarBN is a new precipitate strengthened 9Cr martensitic steel, with added boron and tungsten, designed to provide enhanced creep strength and precipitate stability at high temperature. Accurate characterisation of this material is necessary so that it can be used under flexible plant operating conditions with high temperature fatigue. This paper presents a combined work program of experimental testing and computational modelling on a cast MarBN material. To characterise and assess the fatigue performance of MarBN, an experimental program of high temperature low cycle fatigue (HTLCF) tests is conducted at a temperature of 600 °C. MarBN is found to give an increased stress range compared to previous P91 steel experiments, as well as considerable cyclic softening. To characterise the constitutive behaviour of the cast MarBN material, a recently developed unified cyclic viscoplastic material model is calibrated and validated across a range of strain-rates and strain-ranges, with good correlation achieved with the measured data throughout.

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Richard A. Barrett ◽  
Eimear M. O'Hara ◽  
Padraic E. O'Donoghue ◽  
Sean B. Leen

This paper presents the high-temperature low-cycle fatigue (HTLCF) behavior of a precipitate strengthened 9Cr martensitic steel, MarBN, designed to provide enhanced creep strength and precipitate stability at high temperature. The strain-controlled test program addresses the cyclic effects of strain-rate and strain-range at 600 °C, as well as tensile stress-relaxation response. A recently developed unified cyclic viscoplastic material model is implemented to characterize the complex cyclic and relaxation plasticity response, including cyclic softening and kinematic hardening effects. The measured response is compared to that of P91 steel, a current power plant material, and shows enhanced cyclic strength relative to P91.


Author(s):  
EM O’Hara ◽  
NM Harrison ◽  
BK Polomski ◽  
RA Barrett ◽  
SB Leen

This article is concerned with the high temperature low cycle fatigue behaviour of a new nano-strengthened martensitic-ferritic steel, MarBN. A range of strain-controlled, low cycle fatigue tests are presented on MarBN at 600 ℃ and 650 ℃, and compared with previously published data for a current state-of-the-art material, P91 steel, including microstructural analysis of the fracture mechanisms. A modified Chaboche damage law, incorporating Coffin–Manson life prediction, is implemented within a hyperbolic sine unified cyclic viscoplastic constitutive model. Calibration and validation of the model with respect to the effects of strain-rate and strain-range is performed based on an optimisation procedure for identification of the material parameters. The cyclic viscoplasticity model with damage successfully predicts fatigue damage evolution and life in the cyclically softening materials, MarBN and P91.


1978 ◽  
Vol 27 (292) ◽  
pp. 99-103 ◽  
Author(s):  
Kiyoshi KITA ◽  
Masanori KIYOSHIGE ◽  
Masatake TOMINAGA ◽  
Junzo FUJIOKA

1981 ◽  
Vol 16 (5) ◽  
pp. 417-419
Author(s):  
V. S. Ivanova ◽  
Ya. Gintsler ◽  
L. I. Maslov

Author(s):  
Monika Topel ◽  
Björn Laumert ◽  
Åsa Nilsson ◽  
Markus Jöcker

Liberalized electricity market conditions and concentrating solar power technologies call for increased power plant operational flexibility. Concerning the steam turbine component, one key aspect of its flexibility is the capability for fast starts. In current practice, turbine start-up limitations are set by consideration of thermal stress and low cycle fatigue. However, the pursuit of faster starts raises the question whether other thermal phenomena can become a limiting factor to the start-up process. Differential expansion is one of such thermal properties, especially since the design of axial clearances is not included as part of start-up schedule design and because its measurement during operation is often limited or not a possibility at all. The aim of this work is to understand differential expansion behavior with respect to transient operation and to quantify the effect that such operation would have in the design and operation of axial clearances. This was accomplished through the use of a validated thermo-mechanical model that was used to compare differential expansion behavior for different operating conditions of the machine. These comparisons showed that faster starts do not necessarily imply that wider axial clearances are needed, which means that the thermal flexibility of the studied turbine is not limited by differential expansion. However, for particular locations it was also obtained that axial rubbing can indeed become a limiting factor in direct relation to start-up operation. The resulting approach presented in this work serves to avoid over-conservative limitations in both design and operation concerning axial clearances.


Author(s):  
Yang Zhang ◽  
Tomasz Duda ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
Colin D. Copeland ◽  
...  

This paper is part of a two-part publication that aims to design, simulate and test an internally air cooled radial turbine. To achieve this, the additive manufacturing process, Selective Laser Melting (SLM), was utilized to allow internal cooling passages within the blades and hub. This is, to the authors’ knowledge, the first publication in the open literature to demonstrate an SLM manufactured, cooled concept applied to a small radial turbine. In this paper, the internally cooled radial turbine was investigated using a Conjugate Heat Transfer (CHT) numerical simulation. Topology Optimisation was also implemented to understand the areas of the wheel that could be used safely for cooling. In addition, the aerodynamic loss and efficiency of the design was compared to a baseline non-cooled wheel. The experimental work is detailed in Part 2 of this two-part publication. Given that the aim was to test the rotor under representative operating conditions, the material properties were provided by the SLM technology collaborator. The boundary conditions for the numerical simulation were derived from the experimental testing where the inlet temperature was set to 1023 K. A polyhedral unstructured mesh made the meshing of internal coolant plenums including the detailed supporting structures possible. The simulation demonstrated that the highest temperature at the blade leading edge was 117 K lower than the uncooled turbine. The coolant mass flow required by turbine was 2.5% of the mainstream flow to achieve this temperature drop. The inertia of the turbine was also reduced by 20% due to the removal of mass required for the internal coolant plenums. The fluid fields in both the coolant channels and downstream of the cooled rotor were analyzed to determine the aerodynamic influence on the temperature distribution. Furthermore, the solid stress distribution inside the rotor was analyzed using Finite Element Analysis (FEA) coupled with the CFD results.


Sign in / Sign up

Export Citation Format

Share Document