scholarly journals Direct Observation of Elastic and Plastic Strain Fields During Ductile Tearing of a Ferritic Steel

Author(s):  
Harry E. Coules ◽  
Graeme C. M. Horne ◽  
Matthew J. Peel ◽  
Sam J. Oliver ◽  
Derreck G. A. Van Gelderen ◽  
...  

Residual and thermal stresses have a considerable effect on the process of brittle fracture. In addition to this, the effect of these stresses on elastic-plastic fracture is known to be significant. This is accounted for in structural integrity assessment methodologies such as R6 Rev 4 and BS 7910:2013 by introducing factors representing the interaction between primary and secondary stresses (those that do and do not contribute towards plastic collapse, respectively). The initiation of ductile tearing in a ferritic pressure vessel steel was studied experimentally. Energy-dispersive X-ray diffraction was used to determine lattice strains in the vicinity of a crack tip in modified compact tension specimens at incremental loading steps until the initiation of ductile tearing. The X-ray diffraction measurements allowed the stress field to be evaluated with a high spatial resolution. At the same time, the pattern of total strain at the surface of the specimen was observed using digital image correlation. Prior to the experiment, two samples were subjected to localised out-of-plane compression ahead of the crack tip to introduce a residual stress field and hence significant crack loading in the absence of external load. Stress and strain field data for cracked specimens, with and without a pre-existing residual stress field, indicated significant differences in the development of plastic strain up to the point of tearing initiation. It is shown that this can only be explained when both residual stress and prior material hardening are taken into account.

2019 ◽  
Vol 795 ◽  
pp. 451-457
Author(s):  
Bao Yin Zhu ◽  
Xian Xi Xia ◽  
He Zheng ◽  
Guo Dong Zhang

An typical mode of a structural integrity failure in dissimilar steel welded joints. This paper aims at studying crack tip stress of a steam generator dissimilar welded joint under residual stress field with the method of interaction integral and XFEM. Firstly, the corresponding weak form is obtained where the initial stress field is involved, which is the key step for the XFEM. Then, the interaction integral is applying to calculate the stress intensity factor. In addition, two simple benchmark problems are simulated in order to verify the precision of this numerical method. Finally, this numerical method is applying to calculate the crack tip SIF of the addressed problem. This study finds that the stress intensity factor increases firstly then decreases with the deepening of the crack. The main preponderance of this method concerns avoiding mesh update by take advantage of XFEM when simulating crack propagation, which could avoid double counting. In addition, our obtained results will contribute to the safe assessment of the nuclear power plant steam generator.


2010 ◽  
Vol 652 ◽  
pp. 25-30
Author(s):  
M.K. Khan ◽  
Michael E. Fitzpatrick ◽  
L.E. Edwards ◽  
S.V. Hainsworth

The residual strain field around the scratches of 125µm depth and 5µm root radius have been measured from the Synchrotron X-ray diffraction. Scratches were produced using different tools in fine-grained aluminium alloy AA 5091. Residual stresses up to +1700 micro-strains were measured at the scratch tip for one tool but remained up to only +1000 micro-strains for the other tool scratch. The load-displacement curves obtained from nanoindentation were used to determine the residual stresses around the scratches. It was found that the load-displacement curves are sensitive to any local residual stress field present and behave according to the type of residual stresses. This combination of nanoindentation and synchrotron X-rays has been proved highly effective for the study of small-scale residual stresses around the features such as scratches.


2005 ◽  
Vol 40 (2) ◽  
pp. 199-209 ◽  
Author(s):  
V Fontanari ◽  
F Frendo ◽  
Th Bortolamedi ◽  
P Scardi

The incremental blind hole-drilling and the X-ray diffraction methods were used to measure the residual stress field introduced by shot peening in aluminium alloy 6082-T5 plates. Two peening treatments were selected to produce different depth extensions and peak values arising from different extents of plastic deformation in the surface layer. The results are discussed considering the various sources of uncertainty; in addition to the measuring technique, the effects of the surface treatment that usually induces a strong plastic deformation in the surface layer resulting in material work hardening and worsening of the surface morphology were considered. The residual stress profiles determined by the two methods showed quite good agreement for the two conditions, as regards the values both of the compressive peak and of the penetration depth. The present results provide mutual confirmation of the effectiveness of the two methods for the study of this class of materials.


1986 ◽  
Vol 108 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Weili Cheng ◽  
Iain Finnie

A method is proposed for measurement of the hoop stress in an axisymmetric residual stress field in cylinders in which the axial stress is independent of the axial coordinate. The method involves measuring strains at the outside surface while an axial crack is cut progressively from the outside. Experimental results are presented for two short cylindrical rings cut from a long quenched cylinder. Good general agreement is obtained with X-ray and hole drilling measurements of residual stresses.


2014 ◽  
Vol 996 ◽  
pp. 181-186 ◽  
Author(s):  
Eric Wasniewski ◽  
Baptiste Honnart ◽  
Fabien Lefebvre ◽  
Eric Usmial

Laboratory X-ray diffraction is commonly used for surface residual stresses determination. Nevertheless, the in-depth residual stress gradient also needs to be known. Chemical or electro-polishing method is generally used for material removal. However, material removal may seek a new equilibrium and stress field may change in such a way that experimental residual stress values must be corrected. Different methods exist to account for the residual stress relaxation associated with the material removal operation and will be discussed in this paper.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 263
Author(s):  
Sergei Ivanov ◽  
Antoni Artinov ◽  
Evgenii Zemlyakov ◽  
Ivan Karpov ◽  
Sergei Rylov ◽  
...  

The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al-4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other.


Sign in / Sign up

Export Citation Format

Share Document