Low Cycle Fatigue (EAF) of AISI 304L and 347 in PWR Water

Author(s):  
Tommi Seppänen ◽  
Jouni Alhainen ◽  
Esko Arilahti ◽  
Jussi Solin

The update of the ASME III design fatigue curve for stainless steel in conjunction with the Fen model described in the NUREG/CR-6909 report has been criticized since publication. Data used to develop curves and models raises more questions than it answers. Material testing in a simulated light water reactor environment is difficult due to the temperature and pressure involved. The experimental challenge makes it tempting to take shortcuts where they should least be taken. Facing and overcoming the challenges, direct strain-controlled fatigue testing has been performed at VTT using a unique tailored-for-purpose EAF facility. The applicable ASTM standards E 606 and E1012 are followed to provide results that are directly compatible with ASME Code Section III. Several earlier PVP papers (PVP2016-63291, PVP2017-65374) report lower than calculated experimental Fen factors for stabilized stainless steels. In this paper new results, in line with the previous years’ conclusions, are presented for nonstabilized AISI 304L tested with dual strain rate waveforms. To model environmental effects more accurately, an approach accounting for the damaging effect of plastic strain is proposed. A draft Fen model, similar in structure to the NUREG model but with additional parameters, is shown to significantly improve the accuracy of Fen prediction.

Author(s):  
W. A. Van Der Sluys

The PVRC has just completed a review of the effect of LWR (Light Water Reactor) coolant environment on the low cycle fatigue properties of carbon and low alloy steels. The PVRC has made recommendations to the ASME on changes to the boiler and pressure vessel codes to account for the environmental effects. In developing the recommendations, the margins used to produce the design curves from fatigue test results of laboratory specimens, were studied. This paper describes the margins used by the ASME in the development of the current design curves and discusses what margins should be applied when the laboratory fatigue testing includes tests in simulated LWR coolant environments.


Author(s):  
Som Chattopadhyay

Fatigue damage calculations have been performed in a specific design application using the method outlined in the ASME Code Section III as well as the local strain approach. For both methods, the finite element stress analysis results for a structural component subject to a specified set of transient loadings have been considered. The local strain approach is based on computing strain ranges from the elastic stresses using the material stress strain curve and Neuber’s rule. The allowable number of cycles is determined from the strain ranges and the continuous cycling fatigue curve for the material. A comparison of the fatigue damages predicted by the two methods demonstrates some of the conservatisms of the ASME Code procedure over the local strain approach. The sources of conservatism lie in the low cycle fatigue strain concentration factors and inherent safety factors in the design fatigue curves of the ASME Code. Some of the non-conservatisms in the ASME Code fatigue evaluation could primarily arise from the low cycle fatigue strain concentration factors for stress ranges in the vicinity of 3Sm for the material, a result based on experimental and finite element studies. We have also included an assessment approach based on a material distance parameter for the same problem.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


Author(s):  
Takamoto Itoh ◽  
Masao Sakane ◽  
Takahiro Morishita ◽  
Hiroshi Nakamura ◽  
Masahiro Takanashi

This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of ?=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. ? is a principal stress ratio and is defined as ?=sigmaII/sigmaI, where sigmaI and sigmaII are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at ?=0 is a uniaxial loading test and that at ?=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing ? induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


2013 ◽  
Vol 46 ◽  
pp. 294-301 ◽  
Author(s):  
Chun-Lin Wang ◽  
Tsutomu Usami ◽  
Jyunki Funayama ◽  
Fumiaki Imase

2018 ◽  
Vol 165 ◽  
pp. 06002
Author(s):  
Golta Khatibi ◽  
Ali Mazloum-Nejadari ◽  
Martin Lederer ◽  
Mitra Delshadmanesh ◽  
Bernhard Czerny

In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5737
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Janusz Torzewski ◽  
Ireneusz Szachogłuchowicz ◽  
...  

The paper is a project continuation of the examination of the additive-manufactured 316L steel obtained using different process parameters and subjected to different types of heat treatment. This work contains a significant part of the research results connected with material analysis after low-cycle fatigue testing, including fatigue calculations for plastic metals based on the Morrow equation and fractures analysis. The main aim of this research was to point out the main differences in material fracture directly after the process and analyze how heat treatment affects material behavior during low-cycle fatigue testing. The mentioned tests were run under conditions of constant total strain amplitudes equal to 0.30%, 0.35%, 0.40%, 0.45%, and 0.50%. The conducted research showed different material behaviors after heat treatment (more similar to conventionally made material) and a negative influence of precipitation heat treatment of more porous additive manufactured materials during low-cycle fatigue testing.


Sign in / Sign up

Export Citation Format

Share Document