Pipe Ovalization Prediction for the Pipe-Laying Ocean System

Author(s):  
Matěj Bartecký ◽  
Radim Halama

This contribution brings a new insight into pipe cross section ovalisation due to plastic deformation during pipe-lying process to the seabed. Firstly, the influence of material model calibration on ovalization prediction is presented on pure bending case including the Prager model, the Chaboche model and the modified Abdel-Karim–Ohno model. The mechanism responsible for cross section ovalisation was identified as the phenomenon of the accumulation of plastic deformation, the so-called ratcheting. The next part of this contribution presents main results of the pipe-laying process simulation. The pipe cross-section behavior during passing the considered pipe-laying system is studied in detail. A macro based solution makes possible to do a parametric study and to easily apply the offshore standard DNV-OS-F101 in technical practice.

2018 ◽  
Vol 74 (1) ◽  
pp. 25-41 ◽  
Author(s):  
Yuansheng He ◽  
Yingyu Ren ◽  
Yunfeng Han ◽  
Ningde Jin

AbstractThe present study is a report on the asymmetry of dispersed oil phase in vertical upward oil-water two phase flow. The multi-channel signals of the rotating electric field conductance sensor with eight electrodes are collected in a 20-mm inner diameter pipe, and typical images of low pattern are captured using a high speed camera. With the multi-channel rotating electric field conductance signals collected at pipe cross section, multi-scale time asymmetry (MSA) and an algorithm of multi-scale first-order difference scatter plot are employed to uncover the fluid dynamics of oil-water two phase flow. The results indicate that MSA can characterise the non-linear behaviours of oil-water two phase flow. Besides, the MSA analysis also beneficial for understanding the underlying inhomogeneous distribution of the flow pattern in different directions at pipe cross section.


2013 ◽  
Vol 457-458 ◽  
pp. 257-261
Author(s):  
Li Gang Cai ◽  
Teng Yun Xu ◽  
Yong Sheng Zhao

A virtual material model of joint interfaces was established based on the Hertz contact theory and fractal theory, this model was improved by considering the influence of the elastic-plastic deformation of asperities and ameliorating the calculation methods of the elastic modulus. The simulation results of elastic-plastic considered and elastic-plastic unconsidered were compared, moreover, the finite element simulation results and experimental results were compared to fully explain the necessity of considering the influence of the elastic-plastic deformation and the the correctness of the method to calculate the elastic modulus. The research suggested that under a same load the elastic modulus of the model considering the influence of the elastic-plastic deformation was slightly larger than the un considering one, which means it could describe the characteristics of joint interfaces more accurately.


2019 ◽  
Vol 826 ◽  
pp. 117-124
Author(s):  
Yurii Baidak ◽  
Iryna Vereitina

The paper relates to the field of measuring technologies and deals with the enhancement of thermoconvective method when it is applied for the experimental determination of such hydrodynamics indicators as mass flow rate and velocity of flow by their indirect parameters - capacity of the heater and the temperatures obtained from two thermal sensors, provided that they are located on the hermetic piping system surface. The issue of determination of correction factor on heterogeneity of liquid temperature distribution in the pipe cross section depending on pipe diameter and fluid movement velocity was clarified. According to the results of numerical calculations, the dependencies of temperature gradient on the pipe surface and the correction factor on the heterogeneity of the temperature distribution along the pipe cross-section under the heater in the function of the velocity of flow in pipes of different diameters are plotted. These dependencies specify the thermal method of studying the fluid flow in the pipes, simplify the experiment conduction, are useful in processing of the obtained results and can be applied in measuring engineering.


2012 ◽  
Vol 709 ◽  
pp. 1-36 ◽  
Author(s):  
R. J. Belt ◽  
A. C. L. M. Daalmans ◽  
L. M. Portela

AbstractIn fully developed single-phase turbulent flow in straight pipes, it is known that mean motions can occur in the plane of the pipe cross-section, when the cross-section is non-circular, or when the wall roughness is non-uniform around the circumference of a circular pipe. This phenomenon is known as secondary flow of the second kind and is associated with the anisotropy in the Reynolds stress tensor in the pipe cross-section. In this work, we show, using careful laser Doppler anemometry experiments, that secondary flow of the second kind can also be promoted by a non-uniform non-axisymmetric particle-forcing, in a fully developed turbulent flow in a smooth circular pipe. In order to isolate the particle-forcing from other phenomena, and to prevent the occurrence of mean particle-forcing in the pipe cross-section, which could promote a different type of secondary flow (secondary flow of the first kind), we consider a simplified well-defined situation: a non-uniform distribution of particles, kept at fixed positions in the ‘bottom’ part of the pipe, mimicking, in a way, the particle or droplet distribution in horizontal pipe flows. Our results show that the particles modify the turbulence through ‘direct’ effects (associated with the wake of the particles) and ‘indirect’ effects (associated with the global balance of momentum and the turbulence dynamics). The resulting anisotropy in the Reynolds stress tensor is shown to promote four secondary flow cells in the pipe cross-section. We show that the secondary flow is determined by the projection of the Reynolds stress tensor onto the pipe cross-section. In particular, we show that the direction of the secondary flow is dictated by the gradients of the normal Reynolds stresses in the pipe cross-section, $\partial {\tau }_{rr} / \partial r$ and $\partial {\tau }_{\theta \theta } / \partial \theta $. Finally, a scaling law is proposed, showing that the particle-driven secondary flow scales with the root of the mean particle-forcing in the axial direction, allowing us to estimate the magnitude of the secondary flow.


1997 ◽  
Vol 64 (3) ◽  
pp. 649-657 ◽  
Author(s):  
S. P. Vaze ◽  
E. Corona

This paper addresses the response and stability of elastic-plastic steel tubes with square cross section under pure bending. An analytical model with sufficiently nonlinear kinematics to capture the development of ripples in the compression flange was developed. the results indicate that collapse of such tubes is imperfection sensitive for tubes with “high” height-to-thickness ratio (h/t), but the sensitivity decreases as h/t decreases. Experimentally, the tubes collapse due to a limit moment instability which is followed by the formation of a kink on the compression flange of the tubes. The limit moment and the development of the kink are captured well by the analytical model.


2021 ◽  
Author(s):  
Charles R. Krouse ◽  
Grant O. Musgrove ◽  
Taewoan Kim ◽  
Seungmin Lee ◽  
Muhyoung Lee ◽  
...  

Abstract The Chaboche model is a well-validated non-linear kinematic hardening material model. This material model, like many models, depends on a set of material constants that must be calibrated for it to match the experimental data. Due to the challenge of calibrating these constants, the Chaboche model is often disregarded. The challenge with calibrating the Chaboche constants is that the most reliable method for doing the calibration is a brute force approach, which tests thousands of combinations of constants. Different sampling techniques and optimization schemes can be used to select different combinations of these constants, but ultimately, they all rely on iteratively selecting values and running simulations for each selected set. In the experience of the authors, such brute force methods require roughly 2,500 combinations to be evaluated in order to have confidence that a reasonable solution is found. This process is not efficient. It is time-intensive and labor-intensive. It requires long simulation times, and it requires significant effort to develop the accompanying scripts and algorithms that are used to iterate through combinations of constants and to calculate agreement. A better, more automated method exists for calibrating the Chaboche material constants. In this paper, the authors describe a more efficient, automated method for calibrating Chaboche constants. The method is validated by using it to calibrate Chaboche constants for an IN792 single-crystal material and a CM247 directionally-solidified material. The calibration results using the automated approach were compared to calibration results obtained using a brute force approach. It was determined that the automated method achieves agreeable results that are equivalent to, or supersede, results obtained using the conventional brute force method. After validating the method for cases that only consider a single material orientation, the automated method was extended to multiple off-axis calibrations. The Chaboche model that is available in commercial software, such as ANSYS, will only accept a single set of Chaboche constants for a given temperature. There is no published method for calibrating Chaboche constants that considers multiple material orientations. Therefore, the approach outlined in this paper was extended to include multiple material orientations in a single calibration scheme. The authors concluded that the automated approach can be used to successfully, accurately, and efficiently calibrate multiple material directions. The approach is especially well-suited when off-axis calibration must be considered concomitantly with longitudinal calibration. Overall, the automated Chaboche calibration method yielded results that agreed well with experimental data. Thus, the method can be used with confidence to efficiently and accurately calibrate the Chaboche non-linear kinematic hardening material model.


2013 ◽  
Vol 765 ◽  
pp. 731-735 ◽  
Author(s):  
Uceu Suhuddin ◽  
Vanessa Fischer ◽  
Jorge dos Santos

In the present study, friction spot welding has been used for joining dissimilar AA5754 aluminum to AZ31 magnesium alloys. To get more insight into the microstructure, stop-action experimentation was employed. The welding cycle was forced to stop during the dwell time, and subsequently, the weld was quenched by pouring a mixed solution of ice and water to freeze the microstructure. Formation of the liquid phase leading to a formation of brittle intermetallic compound has been studied. Microstructural analyses reveal that formation of intercalated layers and a high density of grain boundaries induced by plastic deformation enhance the formation of eutectic structure during the welding process.


Sign in / Sign up

Export Citation Format

Share Document