Deformation Behavior and J-Integral of Macroscopic Hydride Platelet Clusters in Hydrided Zr-2.5Nb Pressure Tube Materials Under Plane Strain Conditions

Author(s):  
Shengjia Wu ◽  
Jwo Pan ◽  
Douglas A. Scarth ◽  
Sterling St. Lawrence

Abstract The mechanical behavior and J-integral of macroscopic hydride platelet clusters in hydrided Zr-2.5Nb pressure tube materials are investigated by two-dimensional finite element analyses with cohesive zone model under plane strain conditions. The hydride platelets are assumed to be separated at the early stage of the loading and are treated as cracks. The cohesive zone model with a trapezoidal traction-separation law is adopted. The macroscopic mechanical behavior is quantified by the macroscopic stress-strain relations and the fracture parameter of the bulk radial hydride is specified by the J integral-stress relations. The hydride platelet spacing has major effects while the cohesive energy and cohesive strength have minor effects on the mechanical behavior and fracture properties of the bulk hydrides. The computational results suggest that the hydride platelet cluster can be viewed as a soft region with a reduced load carrying capacity at large stress under plane strain loading conditions. A hydride platelet cluster may be treated as a cracked bulk hydride but with a reduced crack tip driving force for fracture.

2012 ◽  
Vol 591-593 ◽  
pp. 745-749
Author(s):  
Bo Han ◽  
Yu Tao Ju ◽  
Chang Sheng Zhou

The fracture toughness of HTPB propellant has a significant rate effect. In order to establish a fracture criterion considering rate effect for HTPB propellant, experiments were conducted at different loading rates. Two kinds of specimens were used to get the fracture properties. Stress intensity factor and J-integral were obtained by the single edge notched tension specimen test. A power law cohesive zone model was obtained by the experiment based inverse method. Through comparing we found that the stress intensity factor and J-integral cannot model the rate effect in fracture process. The cohesive zone model (CZM) has a constant critical separation distance at different loading rates and has a capability to model the rate effect during the crack initiation and propagation process. A finite element simulation in ABAQUS was given to demonstrate its capability to model the crack propagation.


Author(s):  
Cheng Liu ◽  
Leonid Gutkin ◽  
Douglas Scarth

Zr-2.5Nb pressure tubes in CANDU 1 reactors are susceptible to hydride formation when the solubility of hydrogen in the pressure tube material is exceeded. As temperature decreases, the propensity to hydride formation increases due to the decreasing solubility of hydrogen in the Zr-2.5Nb matrix. Experiments have shown that the presence of hydrides is associated with reduction in the fracture toughness of Zr-2.5Nb pressure tubes below normal operating temperatures. Cohesive-zone approach has recently been used to address this effect. Using this approach, the reduction in fracture toughness due to hydrides was modeled by a decrease in the cohesive-zone restraining stress caused by the hydride fracture and subsequent failure of matrix ligaments between the fractured hydrides. As part of the cohesive-zone model development, the ligament thickness, as represented by the radial spacing between adjacent fractured circumferential hydrides, was characterized quantitatively. Optical micrographs were prepared from post-tested fracture toughness specimens, and quantitative metallography was performed to characterize the hydride morphology in the radial-circumferential plane of the pressure tube. In the material with a relatively low fraction of radial hydrides, further analysis was performed to characterize the radial spacing between adjacent fractured circumferential hydrides. The discrete empirical distributions were established and parameterized using continuous probability density functions. The resultant parametric distributions of radial hydride spacing were then used to infer the proportion of matrix ligaments, whose thickness would not exceed the threshold value for low-energy failure. This paper describes the methodology used in this assessment and discusses its results.


Author(s):  
Vikas Chaudhari ◽  
D. M. Kulkarni ◽  
Shivam Rathi ◽  
Akshay Sancheti ◽  
Swadesh Dixit

Present work deals with the investigation of fracture toughness and modeling parameters need in FEA application for steel use in shipbuilding structure. The investigated steel was 12.5mm thick low carbon high strength steel. Two types of tests were performed, tensile test and fracture test to evaluate mechanical properties and fracture toughness respectively. Cohesive zone model (CZM) was used because it is very computer effective and requires only two parameters, which can be determined in experiments with relative ease. Cohesive zone model with trapezoidal traction law found suitable for the investigated steel. To simulate CZM, bulk section with plane stress elements and bulk section with plane stress with plane strain core scheme are found suitable however bulk section with plane stress with plane strain core scheme gives accurate numerical results.


Author(s):  
Feng Qin ◽  
Ninggang Shen ◽  
Kevin Chou

Coating-substrate interface properties and deposition residual stresses may have significant effects on diamond-coated tool performance. However, it is still distant to understand how the interface mechanical behavior and deposition residual stress together influence the diamond-coated tool thermo-mechanical behavior during machining. In this study, a 2D cutting simulation incorporating deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in crack initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates that the feasibility of implementing cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failure occurred in the cutting simulation is shown. The result shows a large uncut chip thickness can cause cohesive delamination during cutting.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3661 ◽  
Author(s):  
Kaida Dai ◽  
Baodi Lu ◽  
Pengwan Chen ◽  
Jingjing Chen

A microstructure finite element method combining the cohesive zone model (CZM) is used to simulate the mechanical behavior, deformation, and failure of polymer-bonded explosive (PBX) 9501 under quasi-static loading. PBX 9501 consists of Cyclotetramethylene tetranitramine (HMX) filler particles with a random distribution packaged in a polymeric binder. The particle is treated as elastic and the binder as viscoelastic. Cohesive elements with a bilinear softening law are inserted into the particle/binder interface, the HMX particle, and the binder to study the interface’s debonding and failure evolution. Macroscopic stress–strain curves homogenized across the microstructure under tension and compression with different strain rates are basically consistent with the experimental data. The interface debonding approximately vertical to the loading direction is the primary failure mechanism under tension, while shear failure along the interfaces and particle fracture plays a significant role under compression. The effects of interface strengths and strain rates on the performance of PBX 9501 are also evaluated. The tensile and compressive strengths are dependent on the interface strength and strain rate, but the failure paths are insensitive. This model is shown to accurately predict macroscopic responses and improve our understanding of the relationship between the mechanical behavior and microstructure of PBX 9501.


2020 ◽  
Vol 227 (1) ◽  
pp. 79-94
Author(s):  
Johannes Scheel ◽  
Alexander Schlosser ◽  
Andreas Ricoeur

AbstractThe J-integral quantifies the loading of a crack tip, just as the crack tip opening displacement (CTOD) emanating from the cohesive zone model. Both quantities, being based on fundamentally different interpretations of cracks in fracture mechanics of brittle or ductile materials, have been proven to be equivalent in the late 60s of the previous century, however, just for the simple mode-I loading case. The relation of J and CTOD turned out to be uniquely determined by the constitutive law of the cohesive zone in front of the physical crack tip. In this paper, a J-integral vector is derived for a mixed-mode loaded crack based on the cohesive zone approach, accounting for the most general case of a mode-coupled cohesive law. While the $$J_1$$ J 1 -coordinate, as energy release rate of a straight crack extension, is uniquely related to the cohesive potential at the physical crack tip and thus to the CTOD, the $$J_2$$ J 2 -coordinate depends on the solution of the specific boundary value problem in terms of stresses and displacement gradients at the cohesive zone faces. The generalized relation is verified for the Griffith crack, employing solutions of the Dugdale crack based on improved holomorphic functions.


2011 ◽  
Vol 243-249 ◽  
pp. 241-244 ◽  
Author(s):  
Rui Zhang ◽  
Hong Liang Li

In the present paper, a new creep-fatigue crack growth model of J-integral criterion is proposed. The model is built based on the dislocation-free zone (DFZ) theory and cohesive zone model. The process of crack growth is viewed as the intermittent quasi-cleavage fracture of the DFZ. The microscopic void caused by creep will grow and join the dominant crack under creep-fatigue interaction. In this process, material’s plastic deformation induces the change of the dislocation’s density. The redistribution of dislocation will change the value of J-integral within the cohesive zone. When the value of J-integral attains the critical value Jc, crack will grow by the original width of DFZ. Based on it, a simple relation is employed to evaluate crack growth rate under creep-fatigue interaction. The calculated crack growth rate curve exhibits three different regimes, which is in agreement with the general crack propagation pattern under creep-fatigue interaction. The model gives a reasonable explanation for crack growth under creep-fatigue interaction. The calculated value is close to the value obtained by experiment.


Author(s):  
Feng Qin ◽  
Kevin Chou

The interface properties and deposition residual stresses may have significant effects on the diamond-coated tool performance. However, it is still not fully understood how the interface mechanical behavior and deposition residual stress together influence the thermo-mechanical behavior of a diamond-coated tool during machining. In this study, a two-dimensional (2D) cutting simulation incorporating both deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in failure initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates the implementation of a cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failures occurred during the cutting simulation is presented. The result further shows that a larger uncut chip thickness will result in cohesive delamination of the coating-substrate interface during cutting.


Sign in / Sign up

Export Citation Format

Share Document