Implementing a Cohesive Zone Interface in a Diamond-Coated Tool for 2D Cutting Simulations

Author(s):  
Feng Qin ◽  
Ninggang Shen ◽  
Kevin Chou

Coating-substrate interface properties and deposition residual stresses may have significant effects on diamond-coated tool performance. However, it is still distant to understand how the interface mechanical behavior and deposition residual stress together influence the diamond-coated tool thermo-mechanical behavior during machining. In this study, a 2D cutting simulation incorporating deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in crack initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates that the feasibility of implementing cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failure occurred in the cutting simulation is shown. The result shows a large uncut chip thickness can cause cohesive delamination during cutting.

Author(s):  
Feng Qin ◽  
Kevin Chou

The interface properties and deposition residual stresses may have significant effects on the diamond-coated tool performance. However, it is still not fully understood how the interface mechanical behavior and deposition residual stress together influence the thermo-mechanical behavior of a diamond-coated tool during machining. In this study, a two-dimensional (2D) cutting simulation incorporating both deposition residual stresses and an interface cohesive zone model has been developed to demonstrate the feasibility of evaluating coating delamination of a diamond-coated tool during cutting. It has been shown that even the residual deposition stresses alone may result in failure initiations in the cohesive zone (i.e., the interface). In addition, the study further demonstrates the implementation of a cohesive zone interface in a diamond-coated tool in 2D cutting simulation. An example of cohesive failures occurred during the cutting simulation is presented. The result further shows that a larger uncut chip thickness will result in cohesive delamination of the coating-substrate interface during cutting.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3661 ◽  
Author(s):  
Kaida Dai ◽  
Baodi Lu ◽  
Pengwan Chen ◽  
Jingjing Chen

A microstructure finite element method combining the cohesive zone model (CZM) is used to simulate the mechanical behavior, deformation, and failure of polymer-bonded explosive (PBX) 9501 under quasi-static loading. PBX 9501 consists of Cyclotetramethylene tetranitramine (HMX) filler particles with a random distribution packaged in a polymeric binder. The particle is treated as elastic and the binder as viscoelastic. Cohesive elements with a bilinear softening law are inserted into the particle/binder interface, the HMX particle, and the binder to study the interface’s debonding and failure evolution. Macroscopic stress–strain curves homogenized across the microstructure under tension and compression with different strain rates are basically consistent with the experimental data. The interface debonding approximately vertical to the loading direction is the primary failure mechanism under tension, while shear failure along the interfaces and particle fracture plays a significant role under compression. The effects of interface strengths and strain rates on the performance of PBX 9501 are also evaluated. The tensile and compressive strengths are dependent on the interface strength and strain rate, but the failure paths are insensitive. This model is shown to accurately predict macroscopic responses and improve our understanding of the relationship between the mechanical behavior and microstructure of PBX 9501.


Author(s):  
Caroline G. Hopkins ◽  
Peter E. McHugh ◽  
J. Patrick McGarry

In this paper computational simulations of stent coating debonding are presented. Finite element methods are implemented to model coating delamination during stent crimping, deployment and recoil. Gold, titanium and polymer coatings of differing thicknesses are explicitly modeled. The interfacial relationship between the stent surface and the coating during crimping and deployment is simulated using a cohesive zone model.


Author(s):  
Shengjia Wu ◽  
Jwo Pan ◽  
Douglas A. Scarth ◽  
Sterling St. Lawrence

Abstract The mechanical behavior and J-integral of macroscopic hydride platelet clusters in hydrided Zr-2.5Nb pressure tube materials are investigated by two-dimensional finite element analyses with cohesive zone model under plane strain conditions. The hydride platelets are assumed to be separated at the early stage of the loading and are treated as cracks. The cohesive zone model with a trapezoidal traction-separation law is adopted. The macroscopic mechanical behavior is quantified by the macroscopic stress-strain relations and the fracture parameter of the bulk radial hydride is specified by the J integral-stress relations. The hydride platelet spacing has major effects while the cohesive energy and cohesive strength have minor effects on the mechanical behavior and fracture properties of the bulk hydrides. The computational results suggest that the hydride platelet cluster can be viewed as a soft region with a reduced load carrying capacity at large stress under plane strain loading conditions. A hydride platelet cluster may be treated as a cracked bulk hydride but with a reduced crack tip driving force for fracture.


2008 ◽  
Vol 580-582 ◽  
pp. 605-608
Author(s):  
Byeong Choon Goo ◽  
Seung Yong Yang

Residual stresses play an important role in the mechanical behavior of steels and welded structures. To examine the effect of residual stresses on tensile behavior and fatigue, residual stresses in the specimens were generated by welding. Experimental stress-strain curves of the specimens with/without residual stresses were obtained and compared to simulated curves obtained by the finite element analysis. The two results are in a good agreement. Finally, to study the relaxation of the residual stresses during fatigue crack propagation, we carried out fatigue crack propagation analysis by a 3-D cohesive zone model. Initial welding residual stresses decrease as the number of cycles increases.


2013 ◽  
Vol 758 ◽  
pp. 125-131
Author(s):  
José Felix da Silva Neto ◽  
Elisângela Pereira da Silva ◽  
Walquiria Galdino Mendes de Farias ◽  
Arthur Alves de Albuquerque ◽  
Sandro Marden Torres ◽  
...  

In petroleum wells, the adhesion between the steel and the cementitious coating material is responsible for ensuring the efficiency of the mechanical point of view and of the thermodynamic stability of steels, protecting them against corrosion, preventing the escape of fluids inside and hydraulically isolating the structure against infiltration. The push-out test is used to measure the level of adhesion between the steel and cement. In this paper, the numerical simulation of steelcement interface was performed to reproduce the mechanical behavior of this interface used a cohesive zone model combined with Coulomb's law for friction. The proposed model was implemented in CAST3M software. The numerical results obtained with the proposed model were compared with experimental results of push-out test. The comparison between the force versus displacement curves, obtained experimentally and numerically, validated the proposed model.


2020 ◽  
Vol 10 (19) ◽  
pp. 6640
Author(s):  
Zhonghua Shi ◽  
Zhenhang Kang ◽  
Qiang Xie ◽  
Yuan Tian ◽  
Yueqing Zhao ◽  
...  

An effective deicing system is needed to be designed to conveniently remove ice from the surfaces of structures. In this paper, an ultrasonic deicing system for different configurations was estimated and verified based on finite element simulations. The research focused on deicing efficiency factor (DEF) discussions, prediction, and validations. Firstly, seven different configurations of Lead zirconate titanate (PZT) disk actuators with the same volume but different radius and thickness were adopted to conduct harmonic analysis. The effects of PZT shape on shear stresses and optimal frequencies were obtained. Simultaneously, the average shear stresses at the ice/substrate interface and total energy density needed for deicing were calculated. Then, a coefficient named deicing efficiency factor (DEF) was proposed to estimate deicing efficiency. Based on these results, the optimized configuration and deicing frequency are given. Furthermore, four different icing cases for the optimize configuration were studied to further verify the rationality of DEF. The effects of shear stress distributions on deicing efficiency were also analyzed. At same time, a cohesive zone model (CZM) was introduced to describe interface behavior of the plate and ice layer. Standard-explicit co-simulation was utilized to model the wave propagation and ice layer delamination process. Finally, the deicing experiments were carried out to validate the feasibility and correctness of the deicing system.


Sign in / Sign up

Export Citation Format

Share Document