High Frequency Fatigue and Using Frequency Domain Techniques

Author(s):  
Benjamin Francis ◽  
David Mair

Abstract In recent years API 579 has provided the analyst with a detailed outline of the Wang-Brown algorithm (WBCC) for the cycle counting. The WBCC algorithm has become the generally accepted core of cycle counting implementations whenever multi-axial non-proportional fatigue stress histories are encountered. However, for vibration based fatigue, in the absence of any time history at all; it is common in industry to assess fatigue using frequency domain techniques. This paper presents special considerations for determination of the spectral stress fatigue in the spirit of API 579. In the frequency domain the stress cycles are counted a priori as a set of complex vectors. These complex stress vectors may represent the full stress tensor of a reduced set in an appropriate sub-space. The phase relationship between the vectors represents the time delay between the stress components of the stress field. This paper presents some of the actions that are necessary in order to accurately capture the phase relationships. It is often the case that the physics of the driving loads are either unknown or too complex to practically model. This is the case for complex fluid and particle interactions with vessel shells, piping or other wetted surfaces. This paper presents some tools and techniques that can be applied in order to characterize the loading spectrum in a manner which is specifically designed to capture the important fatigue characteristics. Any fatigue estimation technique must convert the stress vector set into a singularly dimensioned scalar metric that represents the stress amplitude of a cycle. However, the maximum stress amplitude from the cycle is not immediately accessible from the complex stress vectors. While a number of papers present techniques that are intended to calculate the maximum stress amplitude in the case where the stress metric is the equivalent stress this paper provides a slightly more general relation for the phase of the maximum amplitude. Finally the analyst must compare their calculated fatigue stress amplitudes to the API 579 fatigue curves. Closed form expressions for mono-linear spectral fatigue have been extensively investigated in the literature but more complex fatigue curves do not have such simple solutions. To this end this paper investigates the smooth bar carbon steel fatigue curves of ASME VIII-2.

2012 ◽  
Vol 479-481 ◽  
pp. 2557-2563
Author(s):  
Zhen Chen ◽  
Chang You Li ◽  
Feng Ying Xu

To study the dynamic mechanical changes in litchi pitting process and improve the accuracy of litchi pitting, this paper established a 3-D solid assembly model of litchi, fixture and tool and conducted the finite element discrete of the model by using ANSYS / LS-DYNA software. In addition, the deformations and stress states of litchi’s multi-layer structure under the effects of tool and fixture were simulated and calculated by the LS-DYNA971 solver. The results showed that the deformations and stresses of litchi’s multi-layer structure changed with the increase of cutting depth, and appeared the maximum amplitude out of sync. When the litchi was gonna cut through, the stress amplitude of fruit pulp was the maximum among litchi’s multi-layer structure and the stress amplitude of fruit pulp was the minimum. Pulp would reach its maximum stress when cutting through the litchi, and because of its low strength, the breakage was prone to occur. The stress of fruit stone was large in the initial stage, and big fruit stone was easily led to the breakage for its overlarge stress. In pitting process, the deformation and slippage of litchi would take place with fixture clamping and tool pitting, so this is a complex dynamic deformation process. This study is urgent to make more comprehensive and systematic researches.


1990 ◽  
Vol 14 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Th.B. Kermanidis ◽  
S.P. Pantelakis ◽  
D.G. Pavlou

1998 ◽  
Vol 120 (4) ◽  
pp. 431-437 ◽  
Author(s):  
A. Kalnins ◽  
D. P. Updike

The condition of shakedown is examined for torispherical heads. The reason for using plastic analysis is to account for the strengthening that heads experience when subjected to internal pressure. Cyclic pressures are considered up to an allowable burst pressure that is based on the membrane stresses of the spherical part of the head. To simulate a proof test before service cycling, cases when the applied pressure is higher for the first cycle are also included. A definition of shakedown is used that places the limit of twice the yield strength on a fatigue stress parameter range that is defined in the paper. The equivalent stress and plastic strain ranges are calculated for ten head thickness-to-spherical radius ratios. From these data, shakedown pressures are obtained as fractions of the allowable burst pressure. By giving bounds for isotropic and kinematic strain-hardening models, the results are made independent from specific cyclic material behavior. It is also shown that if an elastic, geometrically linear algorithm is used, which is unable to account for the strengthening, the fatigue stress parameter range is overestimated for the thinner heads.


Author(s):  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
James Rutledge

ABSTRACT We propose a new frequency-domain-based algorithm for detecting small-magnitude seismic events using dense surface seismic arrays. Our proposed method takes advantage of the high energy carried by S waves, and approximate known source locations, which are used to rotate the horizontal components to obtain the maximum amplitude. By surrounding the known source area with surface geophones, we achieve a favorable geometry for locating the detected seismic events with the backprojection method. To test our new detection method, we used a dense circular array, consisting of 151 5 Hz three-component geophones, over a 5 km aperture that was in operation at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah. We apply the new detection method during a small-scale test injection phase at FORGE, and during an aftershock sequence of an Mw 4.1 earthquake located ∼30  km north of the geophone array, within the Black Rock volcanic field. We are able to detect and locate microseismic events (Mw<0) during injections, despite the high level of anthropogenic activity, and several aftershocks that are missing from the regional catalog. By comparing our method with known algorithms that operate both in the time and frequency domain, we show that our proposed method performs better in the case of the FORGE injection monitoring, and equally well for the off-array aftershock sequence. Our new method has the potential to improve microseismic event detections even in extremely noisy environments, and the proposed location scheme serves as a direct discriminant between true and false detections.


2018 ◽  
Vol 165 ◽  
pp. 10011 ◽  
Author(s):  
Martin Česnik ◽  
Janko Slavič ◽  
Lorenzo Capponi ◽  
Massimiliano Palmieri ◽  
Filippo Cianetti ◽  
...  

In classical fatigue of materials, the frequency contents of dynamic loading are well below the natural frequencies of the observed structure or test specimen. However, when dealing with vibration fatigue the frequency contents of dynamic loading and structure's dynamic response overlap, resulting in amplified stress loads of the structure. For such cases, frequency counting methods are especially convenient. Gaussianity and stationarity assumptions are applied in frequency-domain methods for obtaining dynamic structure's response and frequency-domain methods for calculating damage accumulation rate. Since it is common in real environments for the structure to be excited with non-Gaussian and non-stationary loads, this study addresses the effects of such dynamic excitation to experimental time-to-failure of a structure. Initially, the influence of non-Gaussian stationary excitation is experimentally studied via excitation signals with equal power density spectrum and different values of kurtosis. Since no relevant changes of structure's time-to-failure were observed, the study focused on non-stationary excitation signals that are also inherently non-Gaussian. The non-stationarity of excitation was achieved by amplitude modulation and significantly shorter times-to-failure were observed when compared to experiments with stationary non-Gaussian excitation. Additionally, the structure's time-to-failure varied with the rate of the amplitude modulation. To oversee this phenomenon the presented study proposes a non-stationarity index which can be obtained from the excitation time history. The non-stationarity index was experimentally confirmed as a reliable estimator for severity of non-stationary excitation. The non-stationarity index is used to determine if the frequencydomain methods can safely be applied for time-to-failure calculation.


2019 ◽  
Vol 300 ◽  
pp. 15001
Author(s):  
Tadeusz Łagoda ◽  
Marta Kurek ◽  
Karolina Łagoda

This criterion has been repeatedly verified, analyzed and special cases of this criterion reducing complex stress to equivalent uniaxial were taken into account. Since both normal and shear stress are vectors, we encounter the mathematical problem of adding these vectors, and the question arises how to understand the obtained equivalent stress, because two perpendicular vectors are added with weighting factors. Therefore, in this work it was proposed to adopt a system of complex numbers. Normal stress was defined as the real part and shear stress as imaginary part. As a result, on the basis of the defined complex number and basing on pure bending and pure torsion after transformations, the expression for equivalent stress was identical to the previously proposed criteria defined on the basis of the concept of prof. Macha.


Author(s):  
Xu Zhang ◽  
Chunfa Zhao ◽  
Xiaobo Ren ◽  
Yang Feng ◽  
Can Shi ◽  
...  

The rail pad force and its stress distribution have critical influences on the performance and fatigue life of the rail, fasteners, and sleepers. The characteristics of the rail pad force and its stress distribution in the time and frequency domain obtained from field tests carried out using matrix-based tactile surface sensor are presented in this paper. The field testing involved rail pads under various axle-loads of running trains at different speeds. The influences that the train axle-load, the operational speed, and the rail pad stiffness have on the rail pad force and its stress distribution are analyzed. The test results indicate that the rail pad stiffness has a remarkable influence on the amplitude of the rail pad force but has little influence on its dominant frequencies. The first dominant frequency of the rail pad force is quite close to the passing frequency of the vehicle length. The stress distribution on the rail pad has a parabolic shape along the longitudinal and the lateral directions with the large stress appearing near the center of the rail pad, and is remarkably affected by the service condition of the rail pad. The maximum stress is about 2.5 to 3 times of the average stress, which is significantly greater than the nominal stress resulting from the assumption of uniform stress distribution.


Sign in / Sign up

Export Citation Format

Share Document