Mechanical Stimuli Resulting From Embryonic Muscle Contractions Promote Avian Periosteal Bone Collar Formation

Author(s):  
Niamh C. Nowlan ◽  
Paula Murphy ◽  
Patrick J. Prendergast

Mechanical forces due to muscle contractions play an essential role in embryonic skeletal development. In neuromuscular conditions such as congenital myotonic dystrophy, where movement of the fetus in utero is reduced or absent, the bones and joints of the newborn often show malformations [1]. In this paper, we examine the effect of muscle contractions on embryonic bone development. We propose the hypothesis that mechanical loading due to muscle contractions promotes periosteal ossification and we test this hypothesis using computational and experimental methods. A set of FE analyses were performed using anatomically realistic morphologies and loading conditions, at several timepoints during development, in order to identify biophysical stimuli active during bone formation. Avian immobilization experiments were performed to examine bone growth in the absence of skeletal muscle contractions.

2016 ◽  
Vol 16 (07) ◽  
pp. 1650098
Author(s):  
JOHANA MARIA GUEVARA ◽  
MARIA LUCIA GUTIERREZ GOMEZ ◽  
LUIS ALEJANDRO BARRERA LA ◽  
DIEGO ALEXANDER GARZÓN-ALVARADO

Long bone growth relies on the continuous bone formation from cartilaginous tissue (endochondral ossification). This process starts in the central region (diaphysis) of the forming bone and short before birth, ossification starts in bone extremes (epiphysis). A cartilaginous region known as the growth plate is maintained until adolescence between epiphysis and diaphysis to further contribute to longitudinal growth. Even though there are several biochemical factors controlling this process, there is evidence revealing an important regulatory role of mechanical stimuli. Up to now approaches to understand mechanical effects on ossification have been limited to epiphysis. In this work, based on Carter's mathematical model for epiphyseal ossification, we explored human growth plate response to mechanical loads. We analyzed growth plate stress distribution using finite element method for a generic bone considering different stages of bone development in order to shed light on mechanical contribution to growth plate function. Results obtained revealed that mechanical environment within the growth plate change as epiphyseal ossification progresses. Furthermore, results were compared with physiological behavior, as reported in literature, to analyze the role of mechanical stimulus over development. Our results suggest that mechanical stimuli may play different regulation roles on growth plate behavior through normal long bone development. However, as this approach only took into account mechanical aspects, failed to accurately predict biological behavior in some stages. In order to derive biologically relevant information from computational models it is necessary to consider biological contribution and possible mechanical–biochemical interactions affecting human growth plate physiology. Along these lines, we propose the dilatatorial parameter k used by Carter et al. should assume different values corresponding to the developmental stage in question. Thus, reflecting biochemical contribution changes over time.


2008 ◽  
Vol 4 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Sung-Jin Kim ◽  
Hyeon Lee ◽  
Ramesh Gupta
Keyword(s):  

2006 ◽  
Vol 295 (2) ◽  
pp. 498-506 ◽  
Author(s):  
Francesca Gori ◽  
Lauren G. Friedman ◽  
Marie B. Demay

2005 ◽  
Vol 16 (11) ◽  
pp. 5316-5333 ◽  
Author(s):  
Claudine G. James ◽  
C. Thomas G. Appleton ◽  
Veronica Ulici ◽  
T. Michael Underhill ◽  
Frank Beier

Ordered chondrocyte differentiation and maturation is required for normal skeletal development, but the intracellular pathways regulating this process remain largely unclear. We used Affymetrix microarrays to examine temporal gene expression patterns during chondrogenic differentiation in a mouse micromass culture system. Robust normalization of the data identified 3300 differentially expressed probe sets, which corresponds to 1772, 481, and 249 probe sets exhibiting minimum 2-, 5-, and 10-fold changes over the time period, respectively. GeneOntology annotations for molecular function show changes in the expression of molecules involved in transcriptional regulation and signal transduction among others. The expression of identified markers was confirmed by RT-PCR, and cluster analysis revealed groups of coexpressed transcripts. One gene that was up-regulated at later stages of chondrocyte differentiation was Rgs2. Overexpression of Rgs2 in the chondrogenic cell line ATDC5 resulted in accelerated hypertrophic differentiation, thus providing functional validation of microarray data. Collectively, these analyses provide novel information on the temporal expression of molecules regulating endochondral bone development.


2008 ◽  
Vol 41 ◽  
pp. S52
Author(s):  
Jasper Foolen ◽  
Corrinus C van Donkelaar ◽  
Rik Huiskes ◽  
Keita Ito
Keyword(s):  

2004 ◽  
Vol 97 (3) ◽  
pp. 1119-1128 ◽  
Author(s):  
Barry M. Prior ◽  
H. T. Yang ◽  
Ronald L. Terjung

Exercise and muscle contractions create a powerful stimulus for structural remodeling of the vasculature. An increase in flow velocity through a vessel increases shear stress, a major stimulus for enlargement of conduit vessels. This leads to an endothelial-dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within muscle, in the absence of contractions, leads to an enhanced capillarity by intussusceptive angiogenesis, a process of capillary splitting by intraluminal longitudinal divide. In contrast, sprouting angiogenesis requires extensive endothelial cell proliferation, with degradation of the extracellular matrix to permit migration and tube formation. This occurs during muscle adaptations to chronic contractions and/or muscle overload. The angiogenic growth factor VEGF appears to be an important element in angiogenesis. Recent advances in research have identified hemodynamic and mechanical stimuli that upregulate angiogenic processes, demonstrated a complexity of potent growth factors and interactions with their corresponding receptors, detected an interaction of cellular signaling events, and identified important tissue reorganization processes that must be coordinated to effect vascular remodeling. It is likely that much of this information is applicable to the vascular remodeling that occurs in response to exercise and/or muscle contractions.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4316
Author(s):  
Roni Sides ◽  
Shelley Griess-Fishheimer ◽  
Janna Zaretsky ◽  
Astar Shitrit ◽  
Rotem Kalev-Altman ◽  
...  

Today’s eating patterns are characterized by the consumption of unbalanced diets (UBDs) resulting in a variety of health consequences on the one hand, and the consumption of dietary supplements in order to achieve overall health and wellness on the other. Balanced nutrition is especially crucial during childhood and adolescence as these time periods are characterized by rapid growth and development of the skeleton. We show the harmful effect of UBD on longitudinal bone growth, trabecular and cortical bone micro-architecture and bone mineral density; which were analyzed by micro-CT scanning. Three point bending tests demonstrate the negative effect of the diet on the mechanical properties of the bone material as well. Addition of Spirulina algae or Pleurotus eryngii or Agaricus bisporus mushrooms, to the UBD, was able to improve growth and impaired properties of the bone. 16SrRNA Sequencing identified dysbiosis in the UBD rats’ microbiota, with high levels of pro-inflammatory associated bacteria and low levels of bacteria associated with fermentation processes and bone related mechanisms. These results provide insight into the connection between diet, the skeletal system and the gut microbiota, and reveal the positive impact of three chosen dietary supplements on bone development and quality presumably through the microbiome composition.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Steven W. Lane ◽  
Serena De Vita ◽  
Kylie A. Alexander ◽  
Ruchan Karaman ◽  
Michael D. Milsom ◽  
...  

Abstract Hematopoietic stem cells (HSCs) interact with osteoblastic, stromal, and vascular components of the BM hematopoietic microenvironment (HM) that are required for the maintenance of long-term self-renewal in vivo. Osteoblasts have been reported to be a critical cell type making up the HSC niche in vivo. Rac1 GTPase has been implicated in adhesion, spreading, and differentiation of osteoblast cell lines and is critical for HSC engraftment and retention. Recent data suggest a differential role of GTPases in endosteal/osteoblastic versus perivascular niche function. However, whether Rac signaling pathways are also necessary in the cell-extrinsic control of HSC function within the HM has not been examined. In the present study, genetic and inducible models of Rac deletion were used to demonstrate that Rac depletion causes impaired proliferation and induction of apoptosis in the OP9 cell line and in primary BM stromal cells. Deletion of Rac proteins caused reduced trabecular and cortical long bone growth in vivo. Surprisingly, HSC function and maintenance of hematopoiesis in vivo was preserved despite these substantial cell-extrinsic changes. These data have implications for therapeutic strategies to target Rac signaling in HSC mobilization and in the treatment of leukemia and provide clarification to our evolving concepts of HSC-HM interactions.


2021 ◽  
Author(s):  
Ursula Föger-Samwald ◽  
Maria Papageorgiou ◽  
Katharina Wahl-Figlash ◽  
Katharina Kerschan-Schindl ◽  
Peter Pietschmann

AbstractMuscle force is thought to be one of the main determinants of bone development. Hence, peak muscle growth is expected to precede peak bone growth. In this study, we investigated muscle and bone development in female C57BL/6 J, DBA/2JRj, and C3H/HeOuJ mice. Femoral cortical and trabecular bone structure and the weights of selected muscles were assessed at the ages of 8, 16, and 24 weeks. Muscle mass increased from 8 to 24 weeks in all 3 strains, suggesting peak muscle development at 24 weeks or later. Bone volume fraction, trabecular number, and connectivity density of the femur decreased or remained unchanged, whereas trabecular density and trabecular thickness largely increased. These results suggest a peak in trabecular bone accrual at 8 weeks or earlier followed by further increases in density and structural reorganization of trabeculae. Cortical density, cortical thickness, and cortical cross sectional area increased over time, suggesting a peak in cortical bone accrual at 24 weeks or later. In conclusion, our data provide evidence that growth of muscle lags behind trabecular bone accrual.


Sign in / Sign up

Export Citation Format

Share Document