scholarly journals The Use of Mushrooms and Spirulina Algae as Supplements to Prevent Growth Inhibition in a Pre-Clinical Model for an Unbalanced Diet

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4316
Author(s):  
Roni Sides ◽  
Shelley Griess-Fishheimer ◽  
Janna Zaretsky ◽  
Astar Shitrit ◽  
Rotem Kalev-Altman ◽  
...  

Today’s eating patterns are characterized by the consumption of unbalanced diets (UBDs) resulting in a variety of health consequences on the one hand, and the consumption of dietary supplements in order to achieve overall health and wellness on the other. Balanced nutrition is especially crucial during childhood and adolescence as these time periods are characterized by rapid growth and development of the skeleton. We show the harmful effect of UBD on longitudinal bone growth, trabecular and cortical bone micro-architecture and bone mineral density; which were analyzed by micro-CT scanning. Three point bending tests demonstrate the negative effect of the diet on the mechanical properties of the bone material as well. Addition of Spirulina algae or Pleurotus eryngii or Agaricus bisporus mushrooms, to the UBD, was able to improve growth and impaired properties of the bone. 16SrRNA Sequencing identified dysbiosis in the UBD rats’ microbiota, with high levels of pro-inflammatory associated bacteria and low levels of bacteria associated with fermentation processes and bone related mechanisms. These results provide insight into the connection between diet, the skeletal system and the gut microbiota, and reveal the positive impact of three chosen dietary supplements on bone development and quality presumably through the microbiome composition.

2018 ◽  
Vol 179 (4) ◽  
pp. R165-R182 ◽  
Author(s):  
Tareck Rharass ◽  
Stéphanie Lucas

Bone marrow adipocytes (BMA-) constitute an original and heterogeneous fat depot whose development appears interlinked with bone status throughout life. The gradual replacement of the haematopoietic tissue by BMA arises in a well-ordered way during childhood and adolescence concomitantly to bone growth and continues at a slower rate throughout the adult life. Importantly, BM adiposity quantity is found well associated with bone mineral density (BMD) loss at different skeletal sites in primary osteoporosis such as in ageing or menopause but also in secondary osteoporosis consecutive to anorexia nervosa. Since BMA and osteoblasts originate from a common mesenchymal stem cell, adipogenesis is considered as a competitive process that disrupts osteoblastogenesis. Besides, most factors secreted by bone and bone marrow cells (ligands and antagonists of the WNT/β-catenin pathway, BMP and others) reciprocally regulate the two processes. Hormones such as oestrogens, glucocorticoids, parathyroid and growth hormones that control bone remodelling also modulate the differentiation and the activity of BMA. Actually, BMA could also contribute to bone loss through the release of paracrine factors altering osteoblast and/or osteoclast formation and function. Based on clinical and fundamental studies, this review aims at presenting and discussing these current arguments that support but also challenge the involvement of BMA in the bone mass integrity.


2001 ◽  
Vol 60 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Ann Prentice

The present review addresses the relative contribution of diet and genotype to variability in human bone growth and mineralisation in the context of the aetiology of osteoporosis. Heritability studies indicate that 60–70 % of the variability in bone mineral mass or bone mineral density (BMD) can be accounted for by genetic variation. Cross-trait analyses suggest that a proportion of this variation reflects genetic influences on bone and body size, such as height and lean body mass. Candidate-gene studies have demonstrated associations between several genetic polymorphisms and bone mineral mass but, as yet, genotype determinations have proved unhelpful in identifying individuals at increased risk of osteoporosis. Variations in diet and other environmental factors contribute 30–40 % to total phenotypic variance in bone mineral mass or BMD. Correlations between intakes of individual nutrients and BMD have been reported, but these relationships are subject to confounding due to size. However, no specific dietary factor has been identified from prospective and twin studies as making a significant contribution to environmental variability in BMD or bone loss. This finding may reflect the difficulties in quantifying environmental exposures, both current and over a lifetime. In addition, the influence of diet on bone health may depend on the genotype of the individual. Optimisation of nutrition and lifestyle remains an attractive strategy for the reduction of fracture risk, but more research is required to fully define optimal dietary requirements.


2003 ◽  
Vol 62 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Albert Flynn

Approximately 99% of body Ca is found in bone, where it serves a key structural role as a component of hydroxyapatite. Dietary requirements for Ca are determined by the needs for bone development and maintenance, which vary throughout the life stage, with greater needs during the periods of rapid growth in childhood and adolescence, during pregnancy and lactation, and in later life. There is considerable disagreement between expert groups on the daily Ca intake levels that should be recommended, reflecting the uncertainty in the data for establishing Ca requirements. Inadequate dietary Ca in early life impairs bone development, and Ca supplementation of the usual diet for periods of ≤3 years has been shown to enhance bone mineral status in children and adolescents. However, it is unclear whether this benefit is long term, leading to the optimisation of peak bone mass in early adulthood. In later years inadequate dietary Ca accelerates bone loss and may contribute to osteoporosis. Ca supplementation of the usual diet in post-menopausal women and older men has been shown to reduce the rate of loss of bone mineral density at a number of sites over periods of 1–2 years. However, the extent to which this outcome reduces fracture risk needs to be determined. Even allowing for disagreements on recommended intakes, evidence indicates that dietary Ca intake is inadequate for maintenance of bone health in a substantial proportion of some population groups, particularly adolescent girls and older women.


2002 ◽  
Vol 87 (11) ◽  
pp. 4942-4945 ◽  
Author(s):  
Vinaya Simha ◽  
Joseph E. Zerwekh ◽  
Khashayar Sakhaee ◽  
Abhimanyu Garg

Abstract The adipocyte-derived hormone leptin, which plays an important role in energy homeostasis, has been suggested to have an influence on bone development and remodeling. However, it is not clear from animal studies whether leptin is a stimulator or an inhibitor of bone growth. Cross-sectional studies in humans suggest that serum leptin levels are positively associated with bone mineral density (BMD), but these observations are not consistent, and whether this relationship is independent of obesity remains unclear. We therefore examined the effect of sc leptin administration on BMD and markers of bone turnover in two women, one with congenital generalized lipodystrophy and the other with acquired generalized lipodystrophy. Both patients had regular menstrual cycles. At baseline, the BMD for both patients, measured at the lumbar spine and total hip, was within 1 sd of the peak bone mass. There was no significant change in BMD in both patients after 16–18 months of leptin therapy. Similarly, concentrations of serum osteocalcin and bone-specific alkaline phosphatase or urinary excretion of deoxypyridinoline and N-telopeptides remained unchanged after 6–8 months of leptin therapy, suggesting no effects of leptin on osteoblastic or osteoclastic activity. Our preliminary data suggest that sc leptin replacement in hypoleptinemic patients with generalized lipodystrophy has no effect on the mature adult skeleton.


2008 ◽  
Vol 4 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Sung-Jin Kim ◽  
Hyeon Lee ◽  
Ramesh Gupta
Keyword(s):  

2021 ◽  
Vol 11 (2) ◽  
pp. 710
Author(s):  
Ángel Matute-Llorente ◽  
Ángela Ascaso ◽  
Ana Latorre-Pellicer ◽  
Beatriz Puisac ◽  
Laura Trujillano ◽  
...  

The aim of this study was to evaluate bone health and body composition by dual-energy X-ray absorptiometry (DXA) in individuals with Cornelia de Lange Syndrome (CdLS). Overall, nine individuals with CdLS (five females, all Caucasian, aged 5–38 years) were assessed. Total body less head (TBLH) and lumbar spine (LS) scans were performed, and bone serum biomarkers were determined. Molecular analyses were carried out and clinical scores and skeletal features were assessed. Based on deep sequencing of a custom target gene panel, it was discovered that eight of the nine CdLS patients had potentially causative genetic variants in NIPBL. Fat and lean mass indices (FMI and LMI) were 3.4–11.1 and 8.4–17.0 kg/m2, respectively. For TBLH areal bone mineral density (aBMD), after adjusting for height for age Z-score of children and adolescents, two individuals (an adolescent and an adult) had low BMD (aBMD Z-scores less than –2.0 SD). Calcium, phosphorus, 25-OH-vitamin D, parathyroid hormone, and alkaline phosphatase levels were 2.08–2.49 nmol/L, 2.10–3.75 nmol/L, 39.94–78.37 nmol/L, 23.4–80.3 pg/mL, and 43–203 IU/L, respectively. Individuals with CdLS might have normal adiposity and low levels of lean mass measured with DXA. Bone health in this population seems to be less of a concern during childhood and adolescence. However, they might be at risk for impaired bone health due to low aBMD in adulthood.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2106
Author(s):  
Fernanda Lima de Souza Castro ◽  
Woo K. Kim

Amino acids such as arginine, methionine, and cysteine are the precursors of essential molecules that regulate growth and health, being classified as functional amino acids. This review describes the metabolism of arginine and the sulfur amino acids and how they modulate, directly or indirectly, different tissues. Emphasis is placed on their effects in supporting health during challenging conditions, such as heat stress and Eimeria infection. The use of arginine has been shown to reduce abdominal fat pad in ducks and increase lean tissue and bone mineral density in broilers. Additionally, the sulfur amino acids have been shown to improve bone development and are beneficial during heat stress. The use of L-methionine increased the cortical and trabecular bone mineral densities, in laying hens. Moreover, the dietary inclusion of these amino acids could reduce the damage caused by Eimeria spp. infection by regulating the antioxidant system and cell repair. Understanding how these amino acids can mitigate stressful conditions may provide us novel insights of their use as nutritional strategies to modulate the health status of chickens.


2020 ◽  
pp. 1-10
Author(s):  
Juliane Sonntag ◽  
Mandy Vogel ◽  
Mandy Geserick ◽  
Felix Eckelt ◽  
Antje Körner ◽  
...  

<b><i>Introduction:</i></b> The thyroid parafollicular hormone calcitonin (CT) shows particularly high blood levels in early childhood, a period of high bone turnover, which decrease with increasing age. Data about the physiological role of CT during infancy, childhood, and adolescence are contradictory or lacking. <b><i>Objective:</i></b> We hypothesize that CT demonstrates age-related correlations with parameters of bone growth and turnover as well as with parameters of calcium homeostasis. <b><i>Methods:</i></b> 5,410 measurements of anthropometric data and venous blood samples were collected from 2,636 participants of the LIFE Child study, aged 2 months–18 years. Univariate correlations and multiple regression analysis were performed between serum CT and anthropometric indicators (height standard deviation scores [SDS] and BMI-SDS), markers of calcium (Ca) homeostasis (Ca, parathyroid hormone, 25-OH vitamin D, and phosphate [P]), bone formation (procollagen type 1 N-terminal propeptide [P1NP], osteocalcin), and bone resorption (β-CrossLaps). <b><i>Results:</i></b> CT was significantly associated with Ca (β = 0.26, <i>p</i> &#x3c; 0.05) and P1NP/100 (β = 0.005, <i>p</i> &#x3c; 0.05) in children aged 2 months–1.1 years. These relations were independent of age and sex and could not be confirmed in children aged 1.1–8 years. Independent of age, sex, puberty, P, and height SDS CT showed a significant positive relation to Ca (β = 0.26; <i>p</i> &#x3c; 0.001) in children aged 8–18 years. <b><i>Conclusions:</i></b> Our findings suggest a unique association between CT and Ca in periods of rapid bone growth and point to a possible involvement of CT in promoting bone formation during the first year of life.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Zenzes ◽  
Paul Zaslansky

AbstractMicro-CT provides critical data for musculoskeletal research, yielding three-dimensional datasets containing distributions of mineral density. Using high-resolution scans, we quantified changes in the fine architecture of bone in the spine of young mice. This data is made available as a reference to physiological cancellous bone growth. The scans (n = 19) depict the extensive structural changes typical for female C57BL/6 mice pups, aged 1-, 3-, 7-, 10- and 14-days post-partum, as they attain the mature geometry. We reveal the micro-morphology down to individual trabeculae in the spine that follow phases of mineral-tissue rearrangement in the growing lumbar vertebra on a micrometer length scale. Phantom data is provided to facilitate mineral density calibration. Conventional histomorphometry matched with our micro-CT data on selected samples confirms the validity and accuracy of our 3D scans. The data may thus serve as a reference for modeling normal bone growth and can be used to benchmark other experiments assessing the effects of biomaterials, tissue growth, healing, and regeneration.


Sign in / Sign up

Export Citation Format

Share Document