A Virtual Test Bench to Study Transport Phenomena in 3D Porous Scaffolds Using Lattice Boltzmann Simulations

Author(s):  
Francesco Pennella ◽  
Piergiorgio Gentile ◽  
Marco A. Deriu ◽  
Diego Gallo ◽  
Alessandro Schiavi ◽  
...  

In tissue engineering (TE), scaffolds are widely used to provide a suitable and native-like environment for cell growth, organization, and proliferation. Microstructure of TE scaffolds is fundamental to the cell attachment and in-depth penetration, in conjunction with biological factors as cell seeding and nutrients supply. In particular, several studies have established that an adequate transport of nutrient through the scaffold is fundamental for culturing cells [1]. Hence, the easiness at which fluids/species move through the scaffold and friction forces exherted from fluid motion, have a marked impact in TE processes [2]. Mass transport through scaffolds is a phenomenon that can be described at different scales, the molecular level (nanoscale), the single-pore dimension level (microscale) and the whole-sample level (macroscale). In this work we present a virtual test bench where realistic 3D models of porous TE scaffolds are reconstructed from micro-CT images and the transport phenomena through them is simulated in silico by applying the Lattice Boltzmann Method (LBM). The final aim is to create an effective in silico tool suitable to study and optimize transport phenomena of porous scaffolds. The application of the LBM is justified by its versatility in simulating flows in irregular porous media (i.e. simplicity of handling complex boundaries) and in providing insights into transport properties such as permeability [3–4] and physical quantities as the shear stress, which are barely achievable experimentally [2]. Here, the virtual tool is applied to evaluate the performance of three biomimetic bioactive glass/polymer composite porous scaffolds for bone tissue regeneration with well-known mechanical and chemical properties, but never characterized in terms of transport phenomena. The in silico results are macroscopically validated in terms of permeability (kC) by comparison with experimental permeability (kE) measurements obtained by means of a dedicated test bench, very recently proposed for the characterization of porous media [5].

Fractals ◽  
1994 ◽  
Vol 02 (02) ◽  
pp. 287-290
Author(s):  
MASSIMILIANO GIONA ◽  
ALESSANDRA ADROVER

The prediction of transport parameters in disordered structures in the presence of velocity fields and potential energy barriers has deep implications in diffusional and adsorption controlled processes. Starting from the Langevin formulation of transport at microscopic scales and from the Lattice-Boltzmann equation in porous media, we discuss the possibility of developing efficient lattice simulators for transport phenomena in macroporous/microporous structures


2017 ◽  
Vol 20 (10) ◽  
pp. 899-919 ◽  
Author(s):  
Sajjad Foroughi ◽  
Mohsen Masihi ◽  
Saeid Jamshidi ◽  
Mahmoud Reza Pishvaie

Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


Author(s):  
Andreas G. Yiotis ◽  
John Psihogios ◽  
Michael E. Kainourgiakis ◽  
Aggelos Papaioannou ◽  
Athanassios K. Stubos

Soft Matter ◽  
2021 ◽  
Author(s):  
Miru Lee ◽  
Christoph Lohrmann ◽  
Kai Szuttor ◽  
Harold Auradou ◽  
Christian Holm

We study the transport of bacteria in a porous media modeled by a square channel containing one cylindrical obstacle via molecular dynamics simulations coupled to a lattice Boltzmann fluid.


Sign in / Sign up

Export Citation Format

Share Document