INVESTIGATION OF THE FEASIBILITY OF CRUDE OIL VISCOSITY CHANGE UNDER AN APPLIED ELECTRICAL FIELD IN POROUS MEDIA AND ITS SIGNIFICANCE FOR TRANSPORT PHENOMENA

2019 ◽  
Vol 22 (6) ◽  
pp. 631-646
Author(s):  
Maria Peraki ◽  
Ehsan Ghazanfari ◽  
George F. Pinder
2019 ◽  
Author(s):  
Naomi A. Ogolo ◽  
Daniel O. Adesina ◽  
George O. Akinboro ◽  
Mike O. Onyekonwu

2019 ◽  
pp. 30-38
Author(s):  
Oleg B. Bocharov ◽  
Igor G. Telegin

The article deals with the modification of the Muskat — Leverett model, taking into account the dependence of oil viscosity on dynamic water saturation. We fulfill numerical analysis of the solutions structure and show the effect of viscosity changes on the convective, capillary and graphite flows. The article investigates the change in the rate of flooding of the oil reservoir while reducing the oil viscosity.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 233
Author(s):  
Widuramina Amarasinghe ◽  
Ingebret Fjelde ◽  
Nils Giske ◽  
Ying Guo

During CO2 storage, CO2 plume mixes with the water and oil present at the reservoir, initiated by diffusion followed by a density gradient that leads to a convective flow. Studies are available where CO2 convective mixing have been studied in water phase but limited in oil phase. This study was conducted to reach this gap, and experiments were conducted in a vertically packed 3-dimensional column with oil-saturated unconsolidated porous media at 100 bar and 50 °C (representative of reservoir pressure and temperature conditions). N-Decane and crude oil were used as oils, and glass beads as porous media. A bromothymol blue water solution-filled sapphire cell connected at the bottom of the column was used to monitor the CO2 breakthrough. With the increase of the Rayleigh number, the CO2 transport rate in n-decane was found to increase as a function of a second order polynomial. Ra number vs. dimensionless time τ had a power relationship in the form of Ra = c×τ−n. The overall pressure decay was faster in n-decane compared to crude oil for similar permeability (4 D), and the crude oil had a breakthrough time three times slower than in n-decane. The results were compared with similar experiments that have been carried out using water.


Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


Fuel ◽  
2010 ◽  
Vol 89 (5) ◽  
pp. 1095-1100 ◽  
Author(s):  
Shadi W. Hasan ◽  
Mamdouh T. Ghannam ◽  
Nabil Esmail

2012 ◽  
Vol 86-87 ◽  
pp. 111-117 ◽  
Author(s):  
M.A. Al-Marhoun ◽  
S. Nizamuddin ◽  
A.A. Abdul Raheem ◽  
S. Shujath Ali ◽  
A.A. Muhammadain

2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


Sign in / Sign up

Export Citation Format

Share Document