The Effects of Mechanical and Chemical Stimuli on Mesenchymal Stem Cell Vascular Trans-Differentiation and Paracrine Signaling

Author(s):  
Kathryn Wingate ◽  
Yan Tan ◽  
Wei Tan

Mesenchymal Stem Cells (MSCs) show great promise for the treatment of cardiovascular diseases by tissue engineering and cell therapy. MSCs are particularly useful for vascular therapies as they are easily obtainable, allogenic, trans-differentiate into specific vascular cells, and assist in regenerating vascular tissue through paracrine signaling. [1] However, the mechanisms which direct MSC trans-differentiation and paracrine signaling are not well defined. [2] Incorrect differentiation of MSC can lead to catastrophic side effects such as the development of a dysfunctional endothelium. [3] To safely utilize these cells for the treatment of vascular diseases it is critical to understand the underlying mechanisms that direct MSC differentiation and paracrine signaling.

2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


2019 ◽  
Vol 7 (16) ◽  
pp. 2703-2713 ◽  
Author(s):  
Na Li ◽  
Alex P. Rickel ◽  
Hanna J. Sanyour ◽  
Zhongkui Hong

Stem cell differentiation on a decellularized native blood vessel scaffold under mechanical stimulation for vascular tissue engineering.


2010 ◽  
Vol 38 (3) ◽  
pp. 649-657 ◽  
Author(s):  
Eoin D. O’Cearbhaill ◽  
Mary Murphy ◽  
Frank Barry ◽  
Peter E. McHugh ◽  
Valerie Barron

2021 ◽  
Author(s):  
Jianyun Liu ◽  
Lijun Gan ◽  
Baichen Ma ◽  
Shan He ◽  
Ping Wu ◽  
...  

Abstract Although differential expression of genes is apparent during the adipogenic/osteogenic differentiation of marrow mesenchymal stem cells (MSCs), it is not known whether this is associated with changes in chromosomal structure. In this study, we used ATAC-sequencing technology to observe variations in chromatin assembly during the early stages of MSC differentiation. This showed significant changes in the number and distribution of chromosome accessibility at different time points of adipogenic/osteogenic differentiation. Sequencing of differential peaks indicated alterations in transcription factor motifs involved in MSC differentiation. Gene Ontology (GO) and pathway analysis indicated that changes in biological function resulted from the alterations in chromatin accessibility. We then integrated ATAC-seq and RNA-seq and found that only a small proportion of the overlapped genes were screened out from ATAC-seq and RNA-seq overlapping. Through GO and pathway analysis of these overlapped genes, we not only observed some known biological functions related to adipogenic/osteogenic differentiation but also noticed some unusual biological clustering during MSC differentiation. In summary, our work not only presents the landscape of chromatin accessibility of MSC during differentiation but also helps to further our understanding of the underlying mechanisms of gene expression in these processes.


Author(s):  
Martina Trávníčková ◽  
Lucie Bačáková

Tissue engineering is a very promising field of regenerative medicine. Life expectancy has been increasing, and tissue replacement is increasingly needed in patients suffering from various degenerative disorders of the organs. The use of adult mesenchymal stem cells (e.g. from adipose tissue or from bone marrow) in tissue engineering seems to be a promising approach for tissue replacements. Clinical applications can make direct use of the large secretome of these cells, which can have a positive influence on other cells around. Another advantage of adult mesenchymal stem cells is the possibility to differentiate them into various mature cells via appropriate culture conditions (i.e. medium composition, biomaterial properties, and dynamic conditions). This review is focused on current and future ways to carry out tissue replacement of damaged bones and blood vessels, especially with the use of suitable adult mesenchymal stem cells as a potential source of differentiated mature cells that can later be used for tissue replacement. The advantages and disadvantages of different stem cell sources are discussed, with a main focus on adipose-derived stem cells. Patient factors that can influence later clinical applications are taken into account.


Nanomedicine ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 201-214 ◽  
Author(s):  
Hariharan Ezhilarasu ◽  
Asif Sadiq ◽  
Greeshma Ratheesh ◽  
Sreepathy Sridhar ◽  
Seeram Ramakrishna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document