Mechanical Properties of Closed Cellular Materials Containing Polymer

Author(s):  
Satoshi Kishimoto ◽  
Kimiyoshi Naito ◽  
Toru Shimizu ◽  
Fuxing Yin

Cellular materials have unique thermal, acoustic, damping and energy absorbing properties that can be combined with their structural efficiency. Therefore, many kinds of cellular materials have been developed and tested as energy absorbing and damping materials. Particularly, closed cellular materials are thought to have many favorable properties and applications. In this study, a metallic closed cellular materials containing polymer was fabricated by the penetrating polymer into metal foam. The aluminum and stainless steel foams were selected for the metal foam and epoxy resin and polyurethane resin were selected for the penetrated polymer. The mechanical and damping properties of this material were measured. The results of the compressive tests show that this material has different stress-strain curves among the specimens that include different materials in the cells. Also, These results show that this material has high-energy absorption. The internal friction of this material was measured and the result shows that the internal friction of this material is larger than that of pure aluminum closed cellular material without any polymer and change with increasing of temperature.

Author(s):  
Satoshi Kishimoto ◽  
Kimiyoshi Naito ◽  
Toru Shimizu ◽  
Fuxing Yin

A metallic cellular materials containing polymer was fabricated by the penetrating polymer into metal foam. The aluminum and stainless steel foams were selected for the metal foam and epoxy resin and polyurethane resin were selected for the penetrated polymer. The mechanical, damping shock absorbing properties of this material were measured. The results of the compressive tests show that this material has different stress-strain curves among the specimens that include different materials in the cells. Also, these results show that this material has high-energy absorption. The internal friction of this material was measured and the result shows that the internal friction of this material is larger than that of pure aluminum closed cellular material without any polymer and change with increasing of temperature. The shock absorbability of this material is larger than that of polymer and smaller than that of metallic cellular material.


2007 ◽  
Vol 539-543 ◽  
pp. 3184-3189
Author(s):  
Satoshi Kishimoto ◽  
Norio Shinya

Several methods of fabricating metallic closed cellular materials a spark plasma sintering (SPS) system have been developed. Powdered polymer particles coated with a nickel-phosphorus alloy layer using electro-less plating were pressed into pellets and sintered at high temperatures in a furnace using SPS system. Metallic closed cellular materials containing different materials from the cell walls were then fabricated. The physical, mechanical and damping properties of these materials were measured. The results of the compressive tests show that this material has different stressstrain curves among the specimens that have different cell wall thicknesses and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, it seems that the results of the compressive tests show that this material has a high-energy absorption. The internal friction of this material was measured and the results show that this internal friction is the same as that of pure aluminum. These results suggest that this material can be utilized as an energy absorbing and passive damping material.


2010 ◽  
Vol 638-642 ◽  
pp. 2074-2079
Author(s):  
Satoshi Kishimoto

New methods to fabricate a metallic closed cellular material for smart materials using an isostatic pressing and penetrating method are introduced. Powder particles of polymer or ceramics coated with a metal layer using electro-less plating were pressed into pellets and sintered at high temperature. These powder particles were sintered by spark plasma sintering (SPS) method. Closed cellular materials including polymer were fabricated by penetrating polymer into metallic foams. Many kinds of metallic closed cellular materials including different materials from that of cell walls were tried to fabricate. The physical and mechanical properties of these materials were measured. The results of the compressive tests show that this material has high-energy absorption and the result of measuring the internal friction show that the internal friction of these materials is larger than that of pure aluminum.


2010 ◽  
Vol 654-656 ◽  
pp. 2628-2631 ◽  
Author(s):  
Satoshi Kishimoto ◽  
Toru Shimizu ◽  
Fu Xing Yin ◽  
Kimiyoshi Naito ◽  
Yoshihisa Tanaka

Metallic closed cellular materials containing polymer were fabricated by the penetrating polymer into metal foam. The aluminum and stainless steel foams were selected for the metal foam and epoxy resin and polyurethane resin were selected for the penetrated polymer. The many kinds of mechanical properties of this material were measured. The results of the compressive tests show that these materials have different stress-strain curves among the specimens that containing different materials in the cells. Also, this metallic closed cellular materials containing polymer have higher compressive strength, higher Young’s modules, higher energy absorption and higher internal friction than that of metallic closed cellular material without any polymer.


Author(s):  
Y. Yang ◽  
S. Terada ◽  
M. Okano ◽  
A. Nakai ◽  
H. Hamada

As an energy absorption member, fiber-reinforced composites (FRPs) are more favorable because they are light in weight and possess better energy absorption capabilities as compared to their metal counterparts. However, the energy absorbing mechanisms of FRP are complicated owning to the multi-micro fractures. Therefore, in this study, the designs of FRP tubes were carried out with considerations directed at the energy absorbing mechanisms. Two methods based on the design of the energy absorbed by bending of the fronds (Ubend) and the energy absorbed by fiber fractures (Uff) are concentrated. Here the bending behavior of frond can be considered as the bending beam by an external force. And it is found that Ubend is affected directly by the inertia moment I, which is affect by the geometry. Therefore, FRP tubes were fabricated to have a geometry combined with a bigger I. Additional, in order to get more fiber fractures to get an increased Uff, the design of bending stress, σ, was carried out. FRP tubes bending towards one side only rather than two sides are proposed to get bending fronds with a double thicker thickness, which in turn led to high stresses, many fiber fractures and high energy absorption.


1991 ◽  
Vol 113 (3) ◽  
pp. 350-357
Author(s):  
B. L. Krayterman ◽  
E. B. Magrab

A new design for a urethane cylinder is presented which exhibits very high energy absorption for a given maximum compressive force and for a given amount of urethane. These characteristics are obtained by altering the buckling response of the cylinder by casting in place equally spaced annular steel rings along the cylinder’s length and by introducing a small concave curvature to the cylinder’s walls. This geometry has been analyzed using nonlinear finite element analysis and confirmed with experiment for up to a 50 percent decrease in the cylinder’s original length. The comparison between theory and experiment is good.


The aim of this study is to examine the effect of fiber mat’s density and deformation mechanism of tubes with and without die compression. In this study a new mode of deformation mechanism of density graded GFRP circular tube is examined when they are subjected to axial compression on to a die and without die to examine its energy absorbing capacity. Theoretical calculations were made to predict the crushing stress of different specimens. It is observed that increasing density of fiber increases energy absorption value but decreases the specific energy absorption and the die could trigger progressive crushing additionally decreasing peak load. Here the compressed tube wall is compelled to be deformed towards the end of compression die with a little range of bending curvature which was forced by the radius of the die at high crushing stress and the major part of the deformation takes place at a nearly constant load, which leads to high energy absorption capacity. Comparison between theoretical prediction values by derived equations and the experimental results shows good correlation.


1998 ◽  
Vol 551 ◽  
Author(s):  
S. Kishimoto ◽  
N. Shinya

AbstractA new material for structures in space, which have a high energy absorbability has been developed using a powder particle assembling technique. Powder particles of polystyrene coated with nickel-phosphorus alloy layers using electroless plating were sintered at high temperature. A metallic closed cellular material containing polystyrene was then constructed.The mechanical and ultrasonic properties of this material were measured at both room and high temperatures. The compressive tests of this material show a low Young's modulus and high energy absorption. Ultrasonic measurement shows that the attenuation coefficient of this cellular material is very large and would change due to increasing temperature. These results indicate that this metallic closed cellular material can be used for the space applications.


2012 ◽  
Vol 165 ◽  
pp. 237-241 ◽  
Author(s):  
Amir Radzi Ab Ghani ◽  
Ramlan Kasiran ◽  
Mohd Shahriman Adenan ◽  
Mohd Haniff Mat ◽  
Rizal Effendy Mohd Nasir ◽  
...  

Thin-walled metallic tubular structures are generally used as impact energy absorber in automotive structures due to their ease of fabrication and installation, high energy absorption capacity and long stroke. However, unlike a normal passenger car where the impact energy can be distributed throughout the whole structure, the impact energy absorbing system of an Eco-Challenge car is confined within a limited space on the front bulkhead. The challenge is to develop an impact attenuator system that can effectively absorb the impact energy within the given space and fulfil the specified rate of deceleration. This new design utilized the standard Aluminium 6063 circular tubes, cut and welded into specific configurations i.e. stacked toroidal tubes with central axial tube sandwiched between two flat plates. Two configurations were investigated; circular and square toroids. Explicit non-linear FEA software was used to determine the impact response i.e. energy absorption, impact force and rate of deceleration. Both configurations showed promising results but the configuration that can be readily fabricated was chosen as the final design.


2019 ◽  
Vol 2 (2) ◽  
pp. 105-109
Author(s):  
Tünde Anna Kovács ◽  
Zoltán Nyikes ◽  
Lucia Figuli

Abstract The goal of this work was to invent a high energy absorbing composite material. This composite needs to be able to attach on the building's surfaces and increase blast-resistance. In this innovation, the test samples were reinforced with aramidfiber, glass fiber and carbon fiber and tested by Charpy pendulum impact testing machine. During the tests, the aramid and glass fiber reinforced composites showed good resistance and high energy absorption against impact load.


Sign in / Sign up

Export Citation Format

Share Document