Damage Localization in a Stiffened Composite Panel Using a Lamb Wave Based Tomography Approach

Author(s):  
Anthony J. Vizzini ◽  
Yingtao Liu ◽  
Aditi Chattopadhyay

In structural health monitoring (SHM) of aerospace components, such as stiffened panels, detection and localization of damage is an important issue. This paper presents a methodology for determining the existence and location of low velocity impact damage in a stiffened composite panel. Using a matching pursuit decomposition algorithm, converted modes due to damage were extracted in the time-frequency domain. The energy of the converted mode was then used in conjunction with a probabilistic tomography approach that was able to localize the damage with a high level of accuracy. The results obtained confirm the ability of this approach to detect and localize damage in complex composite structures.

Author(s):  
Venkata M. K. Akula

The layered architecture of composite material allows for designing light-weight structural components. However, one of the challenges associated with composite structures is design and analysis considering impact damage. Although the damage associated with high-velocity impact events is often readily observed in a structure, by loss of material, for example, low-velocity impact damage is not always visible. However, low-velocity impact damage can undermine the strength capacity of a composite component. To ensure the structural integrity of components, predicting the residual strength after impact damage is critical. In this paper, a methodology for analysis of low-velocity impact on a curved composite panel is discussed. First, impact analysis of the panel utilizing Abaqus\Explicit is presented. A metallic projectile is utilized to simulate a tool drop event. Thereafter, a simulation technique for predicting the residual strength of the panel is discussed. The residual strength is measured in terms of collapse load when the panel is subjected to axial compression. Finally, parameter sensitivity analysis is performed to understand the influence of the various design parameters on the residual strength of the component after impact. This procedure requires automating the entire simulation workflow. The results of the simulation are presented along with the important observations.


2018 ◽  
Vol 18 (2) ◽  
pp. 454-465 ◽  
Author(s):  
Shaowei Lu ◽  
Kai Du ◽  
Xiaoqiang Wang ◽  
Caijiao Tian ◽  
Duo Chen ◽  
...  

A novel, omnidirectional, nanomaterial-based sensor technology which can provide wide area damage detection of composite structures was proposed in this work. The behaviors of the buckypaper sensors subjected to both tensile and low-velocity impact were investigated. The experimental results showed that the rectangle buckypaper sensor has a large range of sensing coefficients from 21.40 to 35.83 at different directions under tensile. However, the circular buckypaper sensor has a steady sensing coefficient of about 155.63. Thus, the circular buckypaper sensor as a kind of omnidirectional sensor was chosen to monitor the impact damage. The low-velocity impact damage of composite structures is characterized by the gauge factor of omnidirectional buckypaper sensors and the results of C-scanning. Omnidirectional buckypaper sensors’ electrical resistance increases with repeated impact loading; composite structure elastic deformation and damage evolution can be identified from resistance change. Experiment results show that structure monitoring based on the omnidirectional buckypaper sensor not only can detect small barely visible impact damage flaws and the damage evaluation of composite structures subjected to impact but also can determine the location of low-velocity impact damage through the analysis of results. Through comparison with C-scan, the results have preliminarily demonstrated that the omnidirectional carbon nanotubes’ buckypaper sensor can serve as an efficient tool for sensing the evolution of impact damage as well as serve structural health monitoring of composite structures.


2006 ◽  
Vol 306-308 ◽  
pp. 285-290
Author(s):  
Young Shin Lee ◽  
Hyun Soo Kim ◽  
Young Jin Choi ◽  
Jae Hoon Kim

The laminated composite structures applied to the wing and the speed brake of an aircraft or the turbine blade of a compressor. These structures may be impacted by birds and hails during operation. They may also be impacted by drop of a tool during manufacture or repair. Unlike high velocity impact damage, which can be easily found by the naked eye, the damage due to low velocity impact may be difficult to detect. Damage which is not detected may cause failure of a structure and result in damage propagation. Growth of damage means reduction of stiffness on the structure. So, exact prediction of damage caused by a low velocity impact is very important in order to guard against sudden failure of the structure. In this study, modified delamination failure criterion has suggested in order to predict the failure behavior of a composite plate subjected to low-velocity impact. The criterion includes the assumption which is matrix cracking mode causes delamination failure. Predicted damage using supposed delamination criterion is similar to experiment results.


2012 ◽  
Vol 182-183 ◽  
pp. 1479-1483
Author(s):  
Yu Jing Zhou ◽  
Gang Liu ◽  
Xue Qin Li ◽  
Xiao Su Yi

The strain at the low-velocity impact proceeding was monitored by the fiber Bragg grating (FBG) sensors embedded in the triangle area of the T-stiffened panels. The results show that the strain in whole impact process can be monitored by FBG sensors. Furthermore, the max-strain measured by FBG sensors changed sensitively depending on the different impact energy. It can be hoped that the FBG sensors can be used as online-monitoring technique to improving the safety of the composite structures.


2004 ◽  
Vol 66 (1-4) ◽  
pp. 685-698 ◽  
Author(s):  
B. Whittingham ◽  
I.H. Marshall ◽  
T. Mitrevski ◽  
R. Jones

2006 ◽  
Vol 321-323 ◽  
pp. 759-764 ◽  
Author(s):  
Krishnan Balasubramaniam ◽  
B.V. Soma Sekhar ◽  
J. Vishnu Vardan ◽  
C.V. Krishnamurthy

Structural Health Monitoring (SHM) of aircrafts is of great relevance in the present age aircraft industry. The present study demonstrates three techniques that have the potential for the SHM of multi-layered composite structures. The first technique is based on multi-transmitter-multireceiver (MTMR) technique with tomographic methods used for data reconstruction. In the MTMR, the possibility of SHM using algebraic reconstruction techniques (ART) for tomographic imaging with Lamb wave data measured in realistic materials is examined. Defects (through holes and low velocity impact delaminations) were synthetic and have been chosen to simulate impact damage in composite plates. The second technique is a single-transmitter-multi-receiver (STMR) technique that is more compact and uses reconstruction techniques that are analogous to synthetic aperture techniques. The reconstruction algorithm uses summation of the phase shifted signals to image the location of defects, portions of the plate edges, and any reflectors from inherent structural features of the component. The third technique involves a linear array of sensors across a stiffener for the detection of disbanded regions.


Author(s):  
Yingtao Liu ◽  
Masoud Yekani Fard ◽  
Aditi Chattopadhyay

Impact damage has been identified as a critical form of defect that constantly threatens the reliability of composite structures, such as those used in aircrafts and naval vessels. Low energy impacts can introduce barely visible damage and cause structural degradation. Therefore, efficient structural health monitoring methods, which can accurately detect, quantify, and localize impact damage in complex composite structures, are required. In this paper a novel damage detection methodology is demonstrated for monitoring and quantifying the impact damage propagation. Statistical feature matrices, composed of features extracted from the time and frequency domains, are developed. Kernel Principal Component Analysis (KPCA) is used to compress and classify the statistical feature matrices. Compared with traditional PCA algorithm, KPCA method shows better feature clustering and damage quantification capabilities. A new damage index, formulated using Mahalanobis distance, is defined to quantify impact damage. The developed methodology has been validated using low velocity impact experiments with a sandwich composite wing.


Sign in / Sign up

Export Citation Format

Share Document