Dimensionally Stable Optical Metering Structures With NiTi Composites Fabricated Through Ultrasonic Additive Manufacturing

Author(s):  
Phillip Evans ◽  
Marcelo Dapino ◽  
Ryan Hahnlen ◽  
Joshua Pritchard

High performance optical metering structures in airborne and space applications need to exhibit dimensional stability in demanding thermal and mechanical environments. Materials for this application should have a low coefficient of thermal expansion, high thermal diffusivity, high specific stiffness and exhibit good ductility. Current materials are limited in one or more of these properties. Common choices are invar, carbonfiber composite, and silicon-carbide. The former has low specific stiffness and thermal diffusivity and the latter choices are brittle materials that require special care and have slow manufacturing processes. In this work, the development of a thermally invariant metal matrix composite will be described along with its incorporation into a high performance optical metering structure. The material is a composite of super-elastic NiTi ribbons and aluminum, where the ribbons are embedded using ultrasonic additive manufacturing. Measurements and modeling of the thermo-elastic response will be presented followed by the design and manufacture of a metering structure. The metering structure design eases integration with an optical bench and lens bezels while leveraging the advantageous properties of this new metal matrix composite.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 6167-6172 ◽  
Author(s):  
EUSUN YU ◽  
JEONG-YUN SUN ◽  
HEE-SUK CHUNG ◽  
KYU HWAN OH

Computational simulations on the thermal analysis of metal matrix composite (MMC) composed of Al and SiC were performed in extended areas of SiC volume fraction. Due to the experimental limitations, only the narrow range of SiC volume fraction has been examined. Through the simulation, which enables current experimental situation to extend, we attempted to explore the dependencies of thermal and mechanical properties on changing the value of volume fraction ( V f ). To calculate the coefficient of thermal expansion (CTE), variables with temperature and V f were given in a range from 25°C to 100°C and 0 to 100%, respectively. We obtained quantitative results including CTE as a function of V f , which are in a good agreement with previous experimental reports. Furthermore, the stress analysis about thermally expanded MMC was performed. At low volume fraction of SiC , the thermal expansion caused the tensile stress at Al near the interface. However, as the volume fraction of SiC was increased, the stress turned to be compressive, it's because the linked SiC particles contracted the expansion of Al . The MMC of Al matrix face centered cubic site SiC particles has more stress evolutions than the MMC of Al matrix simple cubic site SiC particles at same volume fraction.


2013 ◽  
Vol 812 ◽  
pp. 271-274
Author(s):  
Johari Nor Hasnidawani ◽  
Noor Azlina Hassan ◽  
Zahurin Halim

The introduction of the eco-core sandwich panel composite is contributing a new approach to the designer to achieve high performance and light weight. In this research project, the new kenaf eco-core sandwich panel will be developed and then laminated with galvanized steel. The final goal is to find the optimum eco-core metal matrix composite sandwich structure with maximum mechanical properties such as stiffness and buckling. Kenaf eco-core sandwich will be fabricated and study on the interaction between eco-core sandwich panel and metal faces will be performed. The characterization of the eco-core sandwich panel will be done using different analytical tools. This study would provide a way to enhance the application of this new eco-core metal matrix composite sandwich structure.The amount of sample used was approximately 12 mg. The temperature profile was from 27°C to 1000°C at a heating rate of 10°C/min. In this study, result shows that degradation of composites starts to occur at about 180°C. Increasing the kenaf percent ratio will decrease the percent residue.


Author(s):  
V. K. Singh ◽  
Sakshi Chauhan ◽  
P. C. Gope ◽  
A. K. Chaudhary

AbstractLately, materials research has shifted to composite materials from monolithic, adjusting to the global need for light weight, low cost, quality, and high performance in structural materials. Every effort aims to develop a material which can be appropriate for various industry and machinery purpose. In the present study, a modest attempt has been made to develop cast aluminum based silicon carbide (SiC) particulate metal matrix composite (MMC) and worked upon to raise the wettability factor between the matrix and dispersion phase. Magnesium (Mg) is used as wetting agent. It works by scavenging the oxygen from dispersoids surface and thinning the gas layer around dispersoids and this is done by forming MgO or MgAl


2018 ◽  
Vol 932 ◽  
pp. 62-75 ◽  
Author(s):  
L. Gyansah ◽  
N.H. Tariq ◽  
J.R. Tang ◽  
X. Qiu ◽  
J.Z. Gao ◽  
...  

In this study, cold spray technique was used as a solid-state additive manufacturing route to deposit a 5 mm thick SiC /Al metal matrix composite. Microstructure and tensile properties were analyzed via different heat treatment conditions (200 oC, 300 oC, 400 oC and 500 oC). Microstructure evolutions were characterized via scanning electron microscopy, X-ray diffraction (XRD) and energy-disperse X-ray spectroscopy (EDS), whilst mechanical properties were investigated via micro-tensile and hardness tests. It was established that the as-sprayed deposit fractured in a brittle manner and had appreciable tensile strength (85 MPa) mainly associated with intensive work hardening effect. At heat treatment conditions, tensile strength (104 MPa) and plasticity (1.5 %-5.2 %) were enhanced due to coarsening of pure Al splat through recrystallization-recovery-grain growth mechanisms. The splat size which controls strength changes from 30.9 ± 2.6 μm to 40.9 ± 4.8 μm, an appreciation of 32 % as heat treatment temperature increased. The main fracture mode at the heat treatment state was a ductile fracture. For plastically deformed splats, the flattening ratios (FR) revealed the top (1.5), middle (1.9) and near interfacial regions (2.2) due to peening effect of SiC particles. The Young moduli were in agreement with the experimental results.


2019 ◽  
Vol 207 ◽  
pp. 129-135 ◽  
Author(s):  
Narinder Singh ◽  
Rupinder Singh ◽  
I.P.S. Ahuja ◽  
Ilenia Farina ◽  
Fernando Fraternali

Day by day a huge measure of research is proceeding to discover the cooling solutions for electronics including various applications for CPU, LED coolers, relay cooling frameworks. The serious issue including electronic parts cooling is the structure of heat sinks and their compatibility with the electronics for the predefined applications. Likewise, the quick-paced progressions in computing driving for the production of superior processors with incorporated complex circuits for which the cooling turned into a troublesome task which became challenging the existing market. This study targets building up a metal matrix composite (MMC) heat sink for low coefficient of thermal expansion (CTE) in electronic parts. Aluminum nitrate (AlN) takes like 12.5% (wt/wt) and mixed Aluminum (Al) to form metal matrix composite (MMC) prototype heat sinks. Prototype metal matrix composite (MMC) properties were evaluated experimentally. The modeling of the laterally perforated finned heat sink (LA-PFHS) is done Solid-works. The sinks are fabricated by using CNC machining. Two configurations of circular piercings on the fins are used in which the diameter and the spacing between piercings vary. In a rectangular insulated duct, the experimental analysis on the three metal matrix composite (MMC) heat sinks was performed under the phenomenon of forced convection at varying heat fluxes and at ambient conditions of temperature 30°C, pressure 101.326 KPa and 45% humidity. From 1.0 m/s to 4.0 m/s wind velocities and with an interval of 1 m/s the experimentation were carried out. Results show that the model III prototype metal matrix composite (MMC) heat sink proposed in this study shows a decrease in thermal resistance (Rth) by 50.51 %.


Sign in / Sign up

Export Citation Format

Share Document