Adaptive State Feedback to Maximize the Power Capture and Reduce the Tower Motion of Wind Turbine in Partial Loading Operation

Author(s):  
Kaman Thapa Magar ◽  
Mark J. Balas

A direct adaptive control approach is used to track the tip speed ratio of wind turbine to maximize the power captured during the below rated wind speed operation. Assuming a known optimum value of tip speed ratio, the deviation of actual tip speed ratio from the optimum one is mathematically expressed as tip speed ratio tracking error. Since the actual tip speed ratio is not a measurable quantity, this expression for tip speed ratio tracking error is linearized and simplified to express it in terms of wind speed and rotor speed, where rotor speed can easily be measured whereas an estimator is designed to estimate the wind speed. Important results from stability and convergence analysis of the proposed adaptive controller with state estimation and state feedback is also presented. From the analysis it was observed that the adaptive disturbance tracking controller can be combined with adaptive state feedback to achieve other control objectives such as reducing the wind turbine structural loading. Hence, an adaptive state feedback scheme is also proposed to reduce wind turbine tower fore-aft and side-side motions.

2012 ◽  
Vol 229-231 ◽  
pp. 2323-2326
Author(s):  
Zong Qi Tan ◽  
Can Can Li ◽  
Hui Jun Ye ◽  
Yu Qiong Zhou ◽  
Hua Ling Zhu

This paper designed the controller of the wind turbine rotor rotating speed. This model of adaptive-PID through control the tip-speed ratio and count the values of PID for variable wind speed. From the result of simulation, the wind speed can run in a good dynamic characteristic, and keep the rotor running in the best tip-speed ratio at the same time.


2018 ◽  
Vol 29 (2) ◽  
pp. 39-49
Author(s):  
M. A. Abdel-Halim M. A. Abdel-Halim

In this research, a cage induction generator has been linked to the grid and driven with a wind-turbine to generate electrical power. The cage generator has been used in place of the costly slip-ring generator. The performance characteristics of the cage induction generator have been ameliorated through changing its number of poles to comply with the level of the wind speed to maximize the mechanical power extracted from the wind. Pole changing has been achieved employing pole-amplitude modulation technique resulting in three sets of pole numbers. The results proved the feasibility and effectiveness of the suggested method, as the proposed technique led to driving the generator, and consequently the wind-turbine at speeds close or equal to those satisfying the optimum tip-speed ratio which corresponds to the point of maximum mechanical power.


Author(s):  
Su Rui ◽  
Zhang Huan ◽  
Wang Fujun ◽  
Li Gangjun

The differential gear train and speed regulating motor constitute the variable ratio transmission for grid-connected wind turbine with differential speed regulation. The synchronous generator in the system can accessing the power grid without frequency converter. The transmission can realize the mode of variable speed constant frequency that the wind rotor speed is varying and the generator rotor speed is constant. The power control method is studied under the different wind speed which is lower or higher than rated wind speed with using the relational expression of utilization rate of wind energy Cp, pitch angle β and the tip speed ratio λ. The SIMULINK software is used to build the 1500 kW wind turbine model with differential speed regulation. Some different wind speed is made as input. The feasibility of power control method for grid-connected wind turbine with differential speed regulation is verified by the comparison between the simulation results and the theoretical value of the key parameters.


2013 ◽  
Vol 291-294 ◽  
pp. 527-530
Author(s):  
Peng Zhan Zhou ◽  
Fang Sheng Tan

Based on BLADED software, the aerodynamic performance of a large scale wind turbine blade was analyzed under variable condition. The results show that the rated power of the blade under variable condition is increased 10%, when the rated wind speed is changed from 10.5m/s to 11.0 m/s. The blade’s wind power coefficient is above 0.46, and its tip speed ratio is between 7.8 and 11.4. When its tip speed ratio is 9.5, the blade’s maximum wind power coefficient is 0.486. It is indicated that the blade has good aerodynamic performance and wide scope of wind speed adaptive capacity. The blade root’s equivalent fatigue load is 2.11 MN•m, and its extreme flapwise load is 4.61 MN•m. The loads under variable condition are both less than that of the designed condition, so the blade’s application under variable condition is safe.


Author(s):  
Dygku. Asmanissa Awg. Osman ◽  
Norzanah Rosmin ◽  
Aede Hatib Mustaamal ◽  
Siti Maherah Hussin ◽  
Md Pauzi Abdullah

<span>This paper presents the performance of a fabricated small-sized Savonious wind turbine with two blades. The design of Savonius vertical axis wind turbine (VAWT) was based on Malaysia wind speed condition. Meanwhile, the design of wind concentrator was based on the dimensions and the constant airflow of an air compressor. From the experimental testing in a laboratory, it was found that the proposed Savonious turbine has best performance when tested using wind concentrator. To conclude, airflow from air compressor can be increased when the proposed wind concentrator is used and hence increasing the proposed VAWT performance in terms of its angular speed (ω), tip speed ratio (TSR) and the generated electrical power (PE).</span>


2019 ◽  
Vol 125 ◽  
pp. 14003
Author(s):  
Eflita Yohana ◽  
MSK. Tony Suryo U ◽  
Binawan Luhung ◽  
Mohamad Julian Reza ◽  
M Badruz Zaman

The Wind turbine is a tool used in Wind Energy Conversion System (WECS). The wind turbine produces electricity by converting wind energy into kinetic energy and spinning to produce electricity. Vertical Axis Wind Turbine (VAWT) is designed to produce electricity from winds at low speeds. Vertical wind turbines have 2 types, they are wind turbine Savonius and Darrieus. This research is to know the effect of addition wind booster to Savonius vertical wind turbine with the variation 2 blades and 3 blades. Calculation the power generated by wind turbine using energy analysis method using the concept of the first law of thermodynamics. The result obtained is the highest value of blade power in Savonius wind turbine without wind booster (16.5 ± 1.9) W at wind speed 7 m/s with a tip speed ratio of 1.00 ± 0.01. While wind turbine Savonius with wind booster has the highest power (26.3 ± 1.6) W when the wind speed of 7 m/s with a tip speed ratio of 1.26 ± 0.01. The average value of vertical wind turbine power increases Savonius after wind booster use of 56%.


Author(s):  
Louis Angelo Danao ◽  
Jonathan Edwards ◽  
Okeoghene Eboibi ◽  
Robert Howell

Numerical simulations using RANS–based CFD have been utilised to carry out investigations on the effects of unsteady wind in the performance of a wind tunnel vertical axis wind turbine. Using a validated CFD model, unsteady wind simulations revealed a fundamental relationship between instantaneous VAWT CP and wind speed. CFD data shows a CP variation in unsteady wind that cuts across the steady CP curve as wind speed fluctuates. A reference case with mean wind speed of 7m/s, wind speed amplitude of ±12%, fluctuating frequency of 0.5Hz and mean tip speed ratio of 4.4 has shown a wind cycle mean power coefficient of 0.33 that equals the steady wind maximum. Increasing wind speed causes the instantaneous tip speed ratio to fall which leads to higher effective angle of attack and deeper stalling on the blades. Stalled flow and rapid changes in angle of attack of the blade induce hysteresis loops in both lift and drag. Decreasing wind speeds limit the perceived angle of attack seen by the blades to near static stall thus reducing the positive effect of dynamic stall on lift generation. Three mean tip speed ratio cases were tested to study the effects of varying conditions of VAWT operation on the overall performance. As the mean tip speed ratio increases, the peak performance also increases.


Author(s):  
Mahasidha Birajdar ◽  
Sandip Kale ◽  
S. N. Sapali

Wind is a one of the clean resources of energy and has the ability to contribute a considerable share in growing world energy consumption. The small wind turbine plays a vital role in fulfillment of energy needs preferably for household purpose. In order to unleash the budding of applicability of small wind turbine, it is necessary to improve its performance. The performance of a small wind turbine can be distinguished by the manners in which power, thrust and torque vary with the wind speed. The wind power indicates the amount of energy captured by the wind turbine rotor. It is convenient to express the performance of small wind turbine by means of non-dimensional performance curves, therefore in this paper the most graphs are drawn to power, thrust and torque coefficients as a function of the tip speed ratio. This paper presents the effect of design parameters such as the tip speed ratio, angle of attack, wind speed, solidity, number of blades, etc. on the aerodynamic performance of small wind turbine and proposes the optimum values of these parameters for the newly designed blade. The new designed blade consists of two new airfoils and named as IND 15045 and IND 09848. This new profile blade is designed for a wind turbine of 1 kW rated power. The blade is divided into ten sections. The designed length of blade is 1.5 m and it is made using IND 15045 airfoils at three root sections and IND 09848 airfoils for remaining seven sections. Q-Blade is used for the numerical simulation of wind turbine airfoils and blade. It is integrated tool of XFOIL and blade element momentum theory of wind turbine blade design. Also the effect of constant rotational speed operation, effect of stall regulation effect of rotational speed change and the effect of solidity on the performance of wind turbine is discussed. This paper delivers a broad view of perception for design of small wind turbine and parameter selection for the new wind turbine blade. Also in this paper the effect of different losses viz. tip losses, drag losses, stall losses and hub losses on the small wind turbine are discussed. The efficiency of the small wind turbine varies significantly with wind speed, but it would be designed such a way that maximized efficiencies are achieved at the wind speed where the maximum energy is available.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Chen ◽  
Qun Lu ◽  
Libing Chen ◽  
Xiaohui Duan ◽  
Boping Yang ◽  
...  

A nonlinear control without using anemometer is proposed to achieve the maximum power of the wind turbine (WT) based on two-mass model in this paper. To track the maximum power points, the optimal tip speed ratio control strategy requiring to know the optimal rotor speed of the WT (ORS) is employed. To achieve the ORS, a torque observer is designed to estimate the aerodynamic torque, then the ORS can be obtained by the corresponding calculations based on the estimated torque. Due to the high nonlinearities of the WT and time-varying wind speed, a nonlinear control based on feedback linearization control (FLC) is adopted to track the ORS. In the FLC, the WT is linearized firstly, then the rotor speed controller is designed via linear control technique. The effectiveness of the proposed control strategy is verified by simulation studies. The simulation results show that, compared with the traditional PI control based on torque estimation and FLC based on wind speed estimation, the proposed control strategy provides better dynamic performances and higher power conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document