Multifunctional Energy Harvesting Locally Resonant Metastructures

Author(s):  
Christopher Sugino ◽  
Vinciane Guillot ◽  
Alper Erturk

Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from the locally resonant metastructure without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, by integrating energy harvesters into a locally resonant metastructure, there is new potential for multifunctional self-powering or self-sensing locally resonant metastructures.

Author(s):  
Aya Watanabe ◽  
Ryousuke Yuyama ◽  
Hiroshi Hosaka ◽  
Akira Yamashita

Abstract This paper describes a friction-driven gyro generator that works under arbitrary vibrations and generates more than 1 W of power. Vibrational generators are energy harvesters that convert environmental vibrations into electrical power via the inertial force of pendulums. In conventional generators that use simple vibration, the power is less than 10 mW for a wearable size because vibrations in the natural environment are as low as 1 Hz. Gyroscopic generators increase the inertial force by rotating a pendulum at high speed and creating a gyro effect. In this generator, a palm-size product that generates 0.1 W and weighs 280 g has already been commercialized, but this device operates only under a particular vibration that synchronizes rotor precession and stalls under random vibration. To solve this problem, in this research, two gimbals and a precession spring are introduced to support the rotor. We developed a prototype generator with straight tracks measuring 16 cm × 11 cm × 12 cm with a mass of 980 g. Under a vibration of 4 Hz and ±20 degrees, power generation of 1.6 W was confirmed. Next, a prototype circular track was made. Power generation of 0.2 W with a vibration of 1 Hz and ±90 degrees was confirmed. Finally, a simple formula to estimate the upper limit of the generation power is derived. It is suggested that the circular-type generator is suitable for low-frequency vibration and can generate twice the power of a straight-type generator.


2012 ◽  
Vol 23 (13) ◽  
pp. 1433-1449 ◽  
Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee-Kiong Soh

In recent years, several strategies have been proposed to improve the functionality of energy harvesters under broadband vibrations, but they only improve the efficiency of energy harvesting under limited conditions. In this work, a comprehensive experimental study is conducted to investigate the use of magnets for improving the functionality of energy harvesters under various vibration scenarios. First, the nonlinearities introduced by magnets are exploited to improve the performance of vibration energy harvesting. Both monostable and bistable configurations are investigated under sinusoidal and random vibrations with various excitation levels. The optimal nonlinear configuration (in terms of distance between magnets) is determined to be near the monostable-to-bistable transition region. Results show that both monostable and bistable nonlinear configurations can significantly outperform the linear harvester near this transition region. Second, for ultra-low-frequency vibration scenarios such as wave heave motions, a frequency up-conversion mechanism using magnets is proposed. By parametric study, the repulsive configuration of magnets is found preferable in the frequency up-conversion technique, which is efficient and insensitive to various wave conditions when the magnets are placed sufficiently close. These findings could serve as useful design guidelines when nonlinearity or frequency up-conversion techniques are employed to improve the functionality of vibration energy harvesters.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Mehdi Hendijanizadeh ◽  
Mohamed Moshrefi-Torbati ◽  
Suleiman M. Sharkh

Existing design criteria for vibration energy harvesting systems provide guidance on the appropriate selection of the seismic mass and load resistance. To harvest maximum power in resonant devices, the mass needs to be as large as possible and the load resistance needs to be equal to the sum of the internal resistance of the generator and the mechanical damping equivalent resistance. However, it is shown in this paper that these rules produce suboptimum results for applications where there is a constraint on the relative displacement of the seismic mass, which is often the case. When the displacement is constrained, increasing the mass beyond a certain limit reduces the amount of harvested power. The optimum load resistance in this case is shown to be equal to the generator's internal resistance. These criteria are extended to those devices that harvest energy from a low-frequency vibration by utilizing an interface that transforms the input motion to higher frequencies. For such cases, the optimum load resistance and the corresponding transmission ratio are derived.


2014 ◽  
Vol 918 ◽  
pp. 106-114 ◽  
Author(s):  
Min Chie Chiu ◽  
Ying Chun Chang ◽  
Long Jyi Yeh ◽  
Chiu Hung Chung ◽  
Chen Hsin Chu

The goal of this paper is to develop and experimentally test portable vibration-based electromagnetic energy harvesters which are fit for extracting low frequency kinetic energy. Based on a previous study on fixed vibration-based electromagnetic energy harvesters, three kinds of portable energy harvesters (prototype I, prototype II, and prototype III) are developed and tested. To obtain the related parameters of the energy harvesters, an experimental platform used to measure the vibrational systems electrical power at the resonant frequency and other fixed frequencies is also established. Based on the research work of vibration theory, a low frequency vibration-arm mechanism (prototype III) which is easily in resonance with a walking tempo is developed. Here, a strong magnet fixed to one side of the vibration-arm along with a set of wires placed along the vibrating path will generate electricity. The circular device has a radius of 180 mm, a width of 50 mm, and weighs 200 grams. Because of its light mass, it is easy to carry and put into a backpack. Experimental results reveal that the energy harvester (prototype III) can easily transform kinetic energy into electrical power via the vibration-based electromagnetic system when walking at a normal speed. Consequently, electrical energy reaching 0.25 W is generated from the energy harvester (prototype III) by extracting kinetic energy produced by walking.


2021 ◽  
pp. 1-16
Author(s):  
Thijs Blad ◽  
Ron A.J. van Ostayen ◽  
Just L. Herder ◽  
Nima Tolou

Abstract The usually high eigenfrequencies of miniaturized oscillators can be significantly lowered by reducing the stiffness through static balancing. In this work, a mechanical design for a statically balanced compliant ortho-planar mechanism is proposed. The mechanism was prototyped using laser micro-machining and subsequently preloaded through packaging. The statically balanced property of the mechanism was experimentally validated by a measurement of the force-deflection relation. A piezoelectric transducer was added and the resulting energy harvesting device was tested at low-frequency vibration of 2Hz. Compared to a reference device, an almost sixfold increase in performance was observed due to the static balancing. Therefore, it was found that the use of static balancing can improve the power output of piezoelectric energy harvesters for low-frequency vibrations.


2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


Author(s):  
Swapnil Arawade ◽  
Ganesh Korwar

In this literature different biomechanical energy harvesters are reviewed. In the past years a lot of work reported on energy harvesting. Energy crisis is the main issue in front of human so it is essential to find new promising ways to fulfil the need of electricity. Wearable smart devices and small sensor require low electrical power so to power them biomechanical energy harvesters comes into picture. The innovative work done by the researchers in developing new biomechanical energy harvester is discussed and summarized.


Author(s):  
Sondipon Adhikari ◽  
Arnab Banerjee

Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concerning harvesting more power from low-frequency input excitations and broadband random excitations. To address this, here we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration energy harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude under certain conditions. Harmonic, as well as broadband random excitations, are considered. Two types of harvesting circuits, namely, without and with an inductor, have been employed. We explicitly demonstrate how different parameters describing the inertial amplifiers should be optimally tuned to maximise harvested power under different types of excitations and circuit configurations. It is possible to harvest five times more power at a 50% lower frequency when the ambient excitation is harmonic. Under random broadband ambient excitations, it is possible to harvest 10 times more power with optimally selected parameters.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


Sign in / Sign up

Export Citation Format

Share Document