A Statically Balanced Compliant Ortho-Planar Mechanism for Low-Frequency Energy Harvesting

2021 ◽  
pp. 1-16
Author(s):  
Thijs Blad ◽  
Ron A.J. van Ostayen ◽  
Just L. Herder ◽  
Nima Tolou

Abstract The usually high eigenfrequencies of miniaturized oscillators can be significantly lowered by reducing the stiffness through static balancing. In this work, a mechanical design for a statically balanced compliant ortho-planar mechanism is proposed. The mechanism was prototyped using laser micro-machining and subsequently preloaded through packaging. The statically balanced property of the mechanism was experimentally validated by a measurement of the force-deflection relation. A piezoelectric transducer was added and the resulting energy harvesting device was tested at low-frequency vibration of 2Hz. Compared to a reference device, an almost sixfold increase in performance was observed due to the static balancing. Therefore, it was found that the use of static balancing can improve the power output of piezoelectric energy harvesters for low-frequency vibrations.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


2012 ◽  
Vol 23 (13) ◽  
pp. 1433-1449 ◽  
Author(s):  
Lihua Tang ◽  
Yaowen Yang ◽  
Chee-Kiong Soh

In recent years, several strategies have been proposed to improve the functionality of energy harvesters under broadband vibrations, but they only improve the efficiency of energy harvesting under limited conditions. In this work, a comprehensive experimental study is conducted to investigate the use of magnets for improving the functionality of energy harvesters under various vibration scenarios. First, the nonlinearities introduced by magnets are exploited to improve the performance of vibration energy harvesting. Both monostable and bistable configurations are investigated under sinusoidal and random vibrations with various excitation levels. The optimal nonlinear configuration (in terms of distance between magnets) is determined to be near the monostable-to-bistable transition region. Results show that both monostable and bistable nonlinear configurations can significantly outperform the linear harvester near this transition region. Second, for ultra-low-frequency vibration scenarios such as wave heave motions, a frequency up-conversion mechanism using magnets is proposed. By parametric study, the repulsive configuration of magnets is found preferable in the frequency up-conversion technique, which is efficient and insensitive to various wave conditions when the magnets are placed sufficiently close. These findings could serve as useful design guidelines when nonlinearity or frequency up-conversion techniques are employed to improve the functionality of vibration energy harvesters.


Author(s):  
Christopher Sugino ◽  
Vinciane Guillot ◽  
Alper Erturk

Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from the locally resonant metastructure without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, by integrating energy harvesters into a locally resonant metastructure, there is new potential for multifunctional self-powering or self-sensing locally resonant metastructures.


Author(s):  
Kuo-Shen Chen

Wireless sensor networks become increasingly important in modern life for structural health monitoring and other related applications. In these applications, due to their overall sensor populations and possible covered measurement areas, the replacement of batteries becomes a difficult and unrealistic task. As a result, energy harvesters to convert environment wasted vibration energy into electricity for powering those sensor nodes become important and many miniaturized device have been realized by using MEMS technology. In order to achieve optimal performance, the energy harvester must be operated at the resonance frequency. However, the vibration frequencies of environmental vibrations are usually much less than that of those miniaturizing energy harvesters and this fact could be a major barrier for energy harvesting performance. In this paper, a new piezoelectric energy scavenging concept is proposed and demonstrated to convert environmental vibrations into electricity. Unlike previous MEMS-based piezoelectric energy harvesters, which suffer from matching between environmental low frequency vibration and the much higher system natural frequency, this work proposes a novel beating design using polymer piezoelectric materials in collaborating with a beating mechanism. That is, by creating impact force via the low frequency vibration motion from the mechanism, it is possible to excite system natural frequency by the low frequency environmental vibrations and it is possible to operate the entire system at the natural frequency. This work contains details in presenting this idea, designing piezoelectric harvester systems with flexible PVDF elements, exploring their vibration characteristics, and energy accumulating strategies by using a capacitor with a full-bridged rectifiers or a boost conversion. By experimental characterization, the overall harvesting efficiency of the proposed design is much greater than that from the design without the beating mechanism. It indicates that the efficiency is significantly improved and the proposed translational design could potentially improve the future design approach for piezoelectric energy harvesters significantly. In summary, this preliminary study shows that it is a feasible scheme for the application of piezoelectric materials in harvesting electricity from environmental vibrations. Although this work is still in its initial phase, the results and conclusions of this work are still invaluable for guiding the development of high efficient piezoelectric harvesters in the future.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3755 ◽  
Author(s):  
Min Wang ◽  
Yiming Xia ◽  
Huayan Pu ◽  
Yi Sun ◽  
Jiheng Ding ◽  
...  

In this paper, we propose a generator for piezoelectric energy harvesting from suspension structures. This device consists of a leaf spring and eight pairs of piezoelectric layers attached to inner and outer surfaces. We present a special type of leaf spring, which can magnify the force from the workload to allow the piezoelectric layers to achieve larger deformation. The generator is to solve the problem of vibration energy reutilization in a low-frequency vibration system. To verify the efficiency of the proposed configuration, a series of experiments are operated. The results indicate that the resonance frequency (25.2 Hz) obtained from the sweep experiment is close to the simulation result (26.1 Hz). Impedance-matching experiments show that the sum of the output power attains 1.7 mW, and the maximum single layer reaches 0.6 mW with an impedance matching of 610 KΩ, and the instantaneous peak-peak power density is 3.82 mW/cm3. The capacitor-charging performance of the generator is also excellent under the series condition. For a 4.7 μF capacitor, the voltage is charged to 25 V in 30 s and limited at 32 V in 80 s. These results demonstrate the exploitable potential of piezoelectric energy harvesting from suspension structures.


Author(s):  
Virgilio J Caetano ◽  
Marcelo A Savi

Energy harvesting from ambient vibration through piezoelectric devices has received a lot of attention in recent years from both academia and industry. One of the main challenges is to develop devices capable of adapting to diverse sources of environmental excitation, being able to efficiently operate over a broadband frequency spectrum. This work proposes a novel multimodal design of a piezoelectric energy harvesting system to harness energy from a wideband ambient vibration source. Circular-shaped and pizza-shaped designs are employed as candidates for the device, comparing their performance with classical beam-shaped devices. Finite element analysis is employed to model system dynamics using ANSYS Workbench. An optimization procedure is applied to the system aiming to seek a configuration that can extract energy from a broader frequency spectrum and maximize its output power. A comparative analysis with conventional energy harvesting systems is performed. Numerical simulations are carried out to investigate the harvester performances under harmonic and random excitations. Results show that the proposed multimodal harvester has potential to harness energy from broadband ambient vibration sources presenting performance advantages in comparison to conventional single-mode energy harvesters.


Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


Author(s):  
Yangyang Zhang ◽  
Bingwei Lu ◽  
Chaofeng Lü ◽  
Xue Feng

Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.


Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


Sign in / Sign up

Export Citation Format

Share Document