Suppression of Cross-Well Oscillations With Active Control of a Bistable Laminate

Author(s):  
Andrew J. Lee ◽  
Antai Xie ◽  
Daniel J. Inman

Although there have been numerous efforts into harnessing the snap through dynamics of bistable structures with piezoelectric transducers to achieve large energy conversion, these same dynamics are undesirable under morphing applications where stationary control of the structure’s configuration is paramount. To suppress cross-well vibrations that primarily result from periodic excitation at low frequencies, a novel control strategy is proposed and implemented on the piezoelectrically generated bistable laminate, which consists of only Macro Fiber Composites (MFC) in a [0MFC/90MFC]T layup. While under cross-well regimes such as chaotic or limit cycle oscillations, a single MFC is actuated past the laminate’s limit voltage to eliminate one of its potential wells and force it into the remaining stable state. Simultaneously, a Positive Position Feedback (PPF) controller suppresses the resulting single-well oscillations through the other MFC. This dual control strategy is demonstrated with an electromechanical model through the suppression of various cross-well regimes, and results in significant reduction of amplitude. The active control capability of the laminate prevents snap through instability when under large enough external vibrations and adds to its multifunctionality along with morphing and broadband energy harvesting.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Andrew J. Lee ◽  
Antai Xie ◽  
Daniel J. Inman

Abstract Although there have been numerous efforts into harnessing the snap through dynamics of bistable structures with piezoelectric transducers to achieve large energy conversion, these same dynamics are undesirable under morphing applications where stationary control of the structure’s configuration is paramount. To suppress cross-well vibrations that primarily result from periodic excitation at low frequencies, a novel control strategy is proposed and implemented on the piezoelectrically generated bistable laminate, which consists of only macro fiber composites (MFCs) in a [0MFC/90MFC]T layup. While under cross-well regimes such as subharmonic, chaotic, or limit cycle oscillations, a single MFC is actuated to the laminate’s limit voltage to eliminate one of its potential wells and force it into the remaining stable state. Simultaneously, a positive position feedback (PPF) controller suppresses the resulting single-well oscillations through the other MFC. This dual control strategy is numerically and experimentally demonstrated through the suppression of various cross-well regimes and results in significant reduction of amplitude. The active control capability of the laminate prevents snap through instability when under large enough external vibrations.


2018 ◽  
Vol 29 (11) ◽  
pp. 2528-2543 ◽  
Author(s):  
Andrew J Lee ◽  
Daniel J Inman

The elastic instabilities associated with buckling in bistable structures have been harnessed toward energy-based and motion-based applications, with significant research toward energy harvesting and morphing. Often combined with smart materials, structural prototypes are designed with a single application in mind. Recently, a novel method of inducing bistability was proposed by bonding two piezoelectrically actuated macro fiber composites in a [Formula: see text] layup and releasing the voltage post cure to yield two cylindrically stable configurations. Since the macro fiber composites are simultaneously the actuator and host structure, the resulting efficiencies enable this bistable laminate to be multifunctional, with both broadband energy harvesting and snap-through morphing capabilities. This article experimentally characterizes the vibration-based energy harvesting performance of the laminate to enable morphing. Through frequency sweeps across the first two modes of both states, the laminate exhibits broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Besides single-well oscillations, snap-throughs are observed in intermittencies and subharmonic, chaotic, and limit cycle oscillations. The maximum power output of each regime and their charge durations of an energy harvesting module are assessed. The laminate’s capabilities are then bridged by utilizing harvested energy in the charged module to initiate snap-through actuation.


2010 ◽  
Vol 26-28 ◽  
pp. 770-775
Author(s):  
Yu Fei Wang ◽  
Lin He ◽  
Xue Yang

A semi-active shock isolation technology with magnetorheological devices was systematically studied. The magnetorheological devices consist of magnetorheological dampers (MRD) and magnetorheological elstomers (MRE) isolator. Based on the method of Lyapunov function, the semi-active control strategy and the control algorithm were developed to minimize the relative movement of the system. The simulation results show that, compared with the passive devices, the semi-active control technology in the paper is effective to reduce the relative displacement and the shock acceleration of protected equipment. And the system will go back to the stable state within ultrashort time.


2006 ◽  
Vol 39 (2) ◽  
pp. 1075-1080 ◽  
Author(s):  
Laure Sinègre ◽  
Nicolas Petit ◽  
Thierry Saint-Pierre ◽  
Pierre Lemétayer

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3642 ◽  
Author(s):  
Ming Ye ◽  
Yitao Long ◽  
Yi Sui ◽  
Yonggang Liu ◽  
Qiao Li

With the development of intelligent vehicle technologies, vehicles can obtain more and more information from various sensors. Many researchers have focused on the vertical and horizontal relationships between vehicles in a vehicle cluster environment and control of the vehicle power system. When the vehicle is driving in the cluster environment, the powertrain system should quickly respond to the driver’s dynamic demand, so as to achieve the purpose of quickly passing through the cluster environment. The vehicle powertrain system should be regarded as a separate individual to research its active control strategy in a vehicle cluster environment to improve the control effect. In this study, the driving characteristics of vehicles in a cluster environment have been analyzed, and a vehicle power-demanded prediction algorithm based on a vehicle-following model has been proposed in a cluster environment. Based on the vehicle power demand forecast and driver operation, an active control strategy of the vehicle powertrain system has been designed considering the passive control strategy of the powertrain system. The results show that the vehicle powertrain system can ensure a sufficient backup power with the active control proposed in the paper, and the motor efficiency is improved by 0.61% compared with that of the passive control strategy. Moreover, the overall efficiency of the powertrain system is increased by 0.6% and the effectiveness of the active control is validated using the vehicle cluster environment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 173719-173730 ◽  
Author(s):  
Jing Zhang ◽  
Hantao Zhang ◽  
Baolin Song ◽  
Songlin Xie ◽  
Zhigang Liu

2016 ◽  
Vol 103 ◽  
pp. 52-57
Author(s):  
Hong Liu ◽  
Henghui Lian ◽  
Shaoyun Ge ◽  
Boyu Fan

Author(s):  
Liming Dai ◽  
Lin Sun

An active control strategy is developed for nonlinear vibration control of an axially translating beam applied in engineering field. The control strategy is established on the basis of Fuzzy Sliding Mode Control. The nonlinear model governing the beam system is described with a six-degree nonlinear dynamic system. Corresponding to the multi-degree nonlinear system, the active control strategy is developed. The proposed control strategy is proven to be effective in controlling and stabilizing the nonlinear motions especially chaotic motion of the beam.


Sign in / Sign up

Export Citation Format

Share Document