Experimental Validation of Neo-Hookean Fiber Reinforced Elastic Solids

Author(s):  
Veysel Erel ◽  
Mingliang Jiang ◽  
Michael R. Moreno ◽  
Alan D. Freed

There have been various theoretical studies done on anisotropic neo-Hookean models; however, there have been limited experimental validations of these theories. In this study, a silicone/silicone laminate with a fiber volume fraction of 18% has been parameterized. Conventional neo-Hookean models have been modified for compressible in-plane deformations. Two-dimensional deformation limitations and a compressible constraint have been discussed. Material parameters have been calculated for three different anisotropic, neo-Hookean models from the literature.

1990 ◽  
Vol 43 (5S) ◽  
pp. S294-S303 ◽  
Author(s):  
M. Taya ◽  
M. Dunn ◽  
B. Derby ◽  
J. Walker

Residual stress induced in a misoriented short fiber composite due to thermal expansion mismatch between the matrix and fiber is investigated. The case of two-dimensional in-plane fiber misorientation is considered. The elastic model that is developed is based on Eshelby’s equivalent inclusion method and is unique in that it accounts for interactions among fibers at different orientations. A parametric study is performed to demonstrate the effects of fiber volume fraction, fiber aspect ratio, fiber distribution cut-off angle, and fiber distribution type on thermal residual stress. Fiber volume fraction and aspect ratio are shown to have more significant effects on the magnitude of the thermal residual stresses than the fiber distribution type and cut-off angle.


2011 ◽  
Vol 306-307 ◽  
pp. 1678-1682
Author(s):  
Jin Hua Jiang ◽  
Nan Liang Chen

In this paper the influence of parameters of fabric preforms on permeability is described. The two-dimensional (2D) permeability has been determined continuously in a matched metal tool incorporating capacitive sensors with LabView. Beforehand, the glassfiber plain, twill, satin weave textile has been thoroughly evaluated to determine the permeability behavior of the textile in dependence on the fiber volume fraction. The paper reveals the significant influence of the fabric structure, and yarn linear density on the permeability values K1 and K2, the flow front ellipse shape, and the anisotropy of preforms.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


Sign in / Sign up

Export Citation Format

Share Document