scholarly journals Verification of Manual Digitization Methods During Experimental Simulation of Knee Motion

Author(s):  
Zachary Hargett ◽  
Manuel Gutierrez ◽  
Melinda Harman

Abstract Cadaveric testing is a common approach for verifying mathematical models used in computational modeling work. In the case of a knee joint model for calculating ligament tension during total knee replacement (TKR) motion, model inputs include rigid body motions defined using the Grood-Suntay coordinate system as a spatial linkage between the tibial component orientation relative to the femoral component. Using this approach requires the definition of coordinate systems for each rigid TKR component (i.e. tibial and femoral) based on fiducial points, manual digitization of a point cloud within the experimental setup, and registration of the orientation relative to the relevant bone marker array. The purpose of this study was to compare the variability between two different manual point digitization methods (a hand-held stylus and pivot tool each calibrated in the optical tracking system), using a TKR femoral component in a simulated cadaver limb experimental setup as an example. This was accomplished by verifying the mathematical algorithm used to calculate the coordinate system from the digitized points, quantifying the variability of the manual digitization methods, and discussing how any error could affect the computational model. For the hand-held stylus method, the standard deviation of the origin and, x-, y-, and z-axis calculations were 0.50mm, 1.31 degrees, 0.51 degrees, and 0.62 degrees, respectively. It is important to note that there is an additional error created using the hand-held stylus from required manual digitization of each rigid marker array. This average additional error was 0.54mm for the origin and 1.70, 1.66, and 0.98 degrees for the x-, y-, and z-axes, respectively. For the pivot tool method, the standard deviation was 0.35mm, 0.37 degrees, 1.27 degrees, and 1.24 degrees for the origin, x-, y-, and z-axes, respectively. It is essential to minimize experimental error, as small errors in alignment can substantially alter model outputs. In this study of cadaver simulation of limb motion, the pivot tool is the better option for minimizing error. Careful definition of fiducial points and repeatable manual digitization of the point cloud is critical for meaningful computational models of TKR motion based on cadaver experimental work.

Author(s):  
Zachary Hargett ◽  
Manuel Gutierrez ◽  
Melinda Harman

Abstract Cadaveric testing is a common approach for verifying mathematical algorithms in computational modeling. In models of total knee replacement (TKR) motion, model inputs commonly include rigid body motions defined using the Grood–Suntay spatial linkage between tibial and femoral components. This approach requires definition of coordinate systems for each rigid TKR component based on fiducial points, manual digitization of a point cloud within the experimental setup, and registration of the orientation relative to bone marker arrays. This study compared variability between two different manual point digitization methods (hand-held stylus and pivot tool each registered in an optical tracking system). This was accomplished by verifying the mathematical algorithm used to calculate the coordinate system from digitized points and quantifying the variability of the digitization methods in a simulated cadaver limb experimental setup. For the hand-held stylus method, the standard deviation was 0.50 mm for the origin and 1.31, 0.51, and 0.62 deg for the x–y–z axes, respectively. Required digitization of each rigid marker array created additional errors of 0.54 mm for the origin and 1.70, 1.66, and 0.98 deg for the x–y–z axes, respectively. For the pivot tool method, the standard deviation was 0.35 mm for the origin and 0.37, 1.27, and 1.24 deg for the x–y–z axes, respectively. In this experimental setup, the pivot tool was the better option for minimizing error while providing repeatable manual digitization of fiducial points and point clouds.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
R. A. Lathrop ◽  
T. T. Cheng ◽  
R. J. Webster

Spatially registered 3D preoperative medical images can improve surgical accuracy and reduce reliance on memory and hand-eye coordination by the surgeon. They enable visualization of internal structures within the anatomy of a patient on the operating table. In the case of biopsy, for example, this would allow the surgeon to guide the needle tip to a tumor though opaque tissue. It has been well established that for soft tissues, image registration can be performed by aligning the preoperative image with a cloud of points that describe the surface of an organ [1]. Collecting this point cloud can be challenging, generally requiring open surgery to permit line-of-sight access for laser triangulation (e.g., the system of Pathfinder Therapeutics, Inc.). We present a conoscopic holography-based system for collecting a point cloud less invasively-through a laparoscopic port. The system consists of a commercial conoscope (Optimet, Inc., Probe Head Mk3), designed for precision machine-shop linear measurements, that is tracked (the surgical tool is also tracked) with an optical tracking system (Claron Micron Tracker H3-60). The conoscope laser beam can, in principle, be aimed through a laparoscopic port. The 1 degree of freedom linear distance measurements it returns are converted into a point cloud using optical tracker information. Proof-of-concept for obtaining point clouds via conoscopic holography and registering them to known shapes is provided in [2]. However, the procedure for collecting these point clouds requires the surgeon to manually `paint' the surface of the organ with the laser beam, aiming it at many points on the surface by manipulating the conoscope base unit, thus pivoting the tube in the laparoscopic port. It would be desirable to relieve the surgeon of this task by creating a system for automatically aiming the laser beam from a stationary conoscope. We hypothesize that this can be done with a suitably designed actuated mirror assembly at the tip of the laparoscopic tube. To assess whether a conoscope can make an accurate distance measurement when reflected by a mirror, we conducted a set of experiments. We placed a front-silvered mirror at a fixed 45 degree angle relative to the conoscope, 12 cm in front of it. Total beam length was 185-315 mm measured in 10 mm increments. The results were similar to direct measurements of the same distance without a mirror. We recorded a standard deviation of error of less than 0.01 mm in each 10 mm increment. A second experiment was then carried out to assess the effect of mirror angle. The laser was swept across a flat surface 105 mm from the mirror by rotating the mirror. The standard deviation of the data points from a true line was less than 0.1 mm along a 175 mm line segment. These experiments indicate the feasibility of using a mirror to aim a conoscopic holographic laser, paving the way for an automatic laparoscopic laser, paving the way for an automatic laparoscopic point cloud collection device to be developed in future work.


Author(s):  
Niklas Holzwarth ◽  
Melanie Schellenberg ◽  
Janek Gröhl ◽  
Kris Dreher ◽  
Jan-Hinrich Nölke ◽  
...  

Abstract Purpose Photoacoustic tomography (PAT) is a novel imaging technique that can spatially resolve both morphological and functional tissue properties, such as vessel topology and tissue oxygenation. While this capacity makes PAT a promising modality for the diagnosis, treatment, and follow-up of various diseases, a current drawback is the limited field of view provided by the conventionally applied 2D probes. Methods In this paper, we present a novel approach to 3D reconstruction of PAT data (Tattoo tomography) that does not require an external tracking system and can smoothly be integrated into clinical workflows. It is based on an optical pattern placed on the region of interest prior to image acquisition. This pattern is designed in a way that a single tomographic image of it enables the recovery of the probe pose relative to the coordinate system of the pattern, which serves as a global coordinate system for image compounding. Results To investigate the feasibility of Tattoo tomography, we assessed the quality of 3D image reconstruction with experimental phantom data and in vivo forearm data. The results obtained with our prototype indicate that the Tattoo method enables the accurate and precise 3D reconstruction of PAT data and may be better suited for this task than the baseline method using optical tracking. Conclusions In contrast to previous approaches to 3D ultrasound (US) or PAT reconstruction, the Tattoo approach neither requires complex external hardware nor training data acquired for a specific application. It could thus become a valuable tool for clinical freehand PAT.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


2021 ◽  
Vol 11 (9) ◽  
pp. 3947
Author(s):  
Marco Farronato ◽  
Gianluca M. Tartaglia ◽  
Cinzia Maspero ◽  
Luigi M. Gallo ◽  
Vera Colombo

Clinical use of portable optical tracking system in dentistry could improve the analysis of mandibular movements for diagnostic and therapeutic purposes. A new workflow for the acquisition of mandibular kinematics was developed. Reproducibility of measurements was tested in vitro and intra- and inter-rater repeatability were assessed in vivo in healthy volunteers. Prescribed repeated movements (n = 10) in three perpendicular directions of the tracking-device coordinate system were performed. Measurement error and coefficient of variation (CV) among repetitions were determined. Mandibular kinematics of maximum opening, left and right laterality, protrusion and retrusion of five healthy subjects were recorded in separate sessions by three different operators. Obtained records were blindly examined by three observers. Intraclass correlation coefficient (ICC) was calculated to estimate inter-rater and intra-rater reliability. Maximum in vitro measurement error was 0.54 mm and CV = 0.02. Overall, excellent intra-rater reliability (ICC > 0.90) for each variable, general excellent intra-rater reliability (ICC = 1.00) for all variables, and good reliability (ICC > 0.75) for inter-rater tests were obtained. A lower score was obtained for retrusion with “moderate reliability” (ICC = 0.557) in the inter-rater tests. Excellent repeatability and reliability in optical tracking of primary movements were observed using the tested portable tracking device and the developed workflow.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2528
Author(s):  
Songlin Bi ◽  
Yonggang Gu ◽  
Jiaqi Zou ◽  
Lianpo Wang ◽  
Chao Zhai ◽  
...  

A high precision optical tracking system (OTS) based on near infrared (NIR) trinocular stereo vision (TSV) is presented in this paper. Compared with the traditional OTS on the basis of binocular stereo vision (BSV), hardware and software are improved. In the hardware aspect, a NIR TSV platform is built, and a new active tool is designed. Imaging markers of the tool are uniform and complete with large measurement angle (>60°). In the software aspect, the deployment of extra camera brings high computational complexity. To reduce the computational burden, a fast nearest neighbor feature point extraction algorithm (FNNF) is proposed. The proposed method increases the speed of feature points extraction by hundreds of times over the traditional pixel-by-pixel searching method. The modified NIR multi-camera calibration method and 3D reconstruction algorithm further improve the tracking accuracy. Experimental results show that the calibration accuracy of the NIR camera can reach 0.02%, positioning accuracy of markers can reach 0.0240 mm, and dynamic tracking accuracy can reach 0.0938 mm. OTS can be adopted in high-precision dynamic tracking.


Sign in / Sign up

Export Citation Format

Share Document