Thickness and Distribution of the Transfer Film in Journal Bearing

Author(s):  
Adam Polak ◽  
Janusz Grzybek

Paper presents investigations of the transfer film formation processes in tribological pair: steel journal–plastic bushing. Processes of transfer film formation were examined for different operating conditions of friction pair (pressure, sliding speed and temperature). Conducted tests and examinations enabled characterization of transfer film formation processes in dependence of operating conditions. Obtained results allowed, to determine dependencies between operating conditions and thickness and distribution of the transfer film.

2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Stephan von Goeldel ◽  
Thomas Reichenbach ◽  
Florian König ◽  
Leonhard Mayrhofer ◽  
Gianpietro Moras ◽  
...  

AbstractSolid lubricants such as polytetrafluoroethylene (PTFE) are used in rolling-element bearings (REBs) when conventional lubrication (i.e. by fluids or greases) cannot be applied owing to extreme operating conditions (e.g. high temperatures or vacuum). Often a double transfer film mechanism is used with a cage acting as a lubricant reservoir resupplying the REB with solid lubricant by cage wear. An increase in service life of such bearings requires a better understanding of the transfer processes in the sliding and rolling contacts. Here, we investigate the effect of PTFE resupply on friction and lubricant film formation in a steel/steel and steel/glass rolling contact by tribometry and classical molecular dynamics (MD). A ball-on-disk tribometer is enhanced by a pin-on-disk sliding contact that transfers PTFE to the disk. The experiment allows simultaneous in situ measurement of friction and film thickness by white light interferometry in the rolling point contact. Increasing the pin load results in an increased PTFE film thickness in the rolling contact accompanied by a significant decrease in friction. To elucidate the observed film transfer and friction mechanism, sliding MD simulations with a newly developed density-functional-based, non-reactive force field for PTFE-lubricated iron oxide surfaces are performed. A strong adhesion of PTFE chains to iron oxide drives transfer film formation, whilst shear-induced chain alignment within PTFE results in reduced friction. The simulations reveal an anti-correlation between PTFE film thickness and friction coefficient—in agreement with the experiments. These investigations are a first step towards methods to control PTFE transfer film formation in REBs. Graphic Abstract


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4931
Author(s):  
Rafael Lucas Machado Pinto ◽  
Juan Carlos Horta Gutiérrez ◽  
Robson Bruno Dutra Pereira ◽  
Paulo Eustáquio de Faria ◽  
Juan Carlos Campos Rubio

This work applies a procedure for analysis and characterization of the surface of brake friction materials, correlating them with the tribological and thermal properties achieved in different vehicle braking conditions. Experiments were performed in a vehicle under two real conditions of braking operation, simulated flat track descent and emergency braking. Characteristics of the plates formed on the surfaces of the friction materials were analyzed by scanning electron microscopy (SEM) and correlated with the performance during braking, as measured by the coefficient of friction at the interface of the friction pair and temperature. As a result, the formation of the primary and secondary plateaus in these two different braking operating conditions was observed, and the relationship between the characteristics of the plateaus formed on the surface and the surface roughness parameters and performance measurements during braking.


2021 ◽  
Author(s):  
Stephan von Goeldel ◽  
Thomas Reichenbach ◽  
Florian König ◽  
Leonhard Mayrhofer ◽  
Gianpietro Moras ◽  
...  

Abstract Solid lubricants such as polytetrafluoroethylene (PTFE) are used in rolling-element bearings (REBs) when conventional lubrication (i.e. by fluids or greases) cannot be applied owing to extreme operating conditions (e.g. high temperatures or vacuum). Often a double transfer film mechanism is used with a cage acting as a lubricant reservoir resupplying the REB with solid lubricant by cage wear. An increase in service life of such bearings requires a better understanding of the transfer processes in the sliding and rolling contacts. Here, we investigate the effect of PTFE resupply on friction and lubricant film formation in a steel/steel and steel/glass rolling contact by tribometry and classical molecular dynamics (MD). A ball-on-disk tribometer is enhanced by a pin-on-disk sliding contact that transfers PTFE to the disk. The experiment allows simultaneous in situ measurement of friction and film thickness by white light interferometry in the rolling point contact. Increasing the pin load results in an increased PTFE film thickness in the rolling contact accompanied by a significant decrease in friction. To elucidate the observed film transfer and friction mechanism, sliding MD simulations with a newly developed density-functional-based, non-reactive force field for PTFE-lubricated iron oxide surfaces are performed. A strong adhesion of PTFE chains to iron oxide drives transfer film formation, while shear-induced chain alignment within PTFE results in reduced friction. The simulations reveal an anti-correlation between PTFE film thickness and friction coefficient – in agreement with the experiments. These investigations are a first step towards methods to control PTFE transfer film formation in REBs.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 759
Author(s):  
Andrea Mariscotti

Accurate and comprehensive methods for the assessment of radiated electromagnetic emissions in modern electric transportation systems are a necessity. The characteristics and susceptibility of modern victim signaling and communication radio services, operating within and outside the right-of-way, require an update of the measurement methods integrating or replacing the swept frequency technique with time domain approaches. Applicable standards are the EN 50121 (equivalent to the IEC 62236) and Urban Mass Transport Association (UMTA) with additional specifications from project contracts. This work discusses the standardized methods and settings, and the representative operating conditions, highlighting areas where improvements are possible and opportune (statistical characterization of measurement results, identification and distinction of emissions and line resonances, and narrowband and broadband phenomena). In particular for the Electromagnetic Compatibility (EMC) assessment with new Digital Communication Systems, the characterization of time distribution of spectral properties is discussed, e.g., by means of Amplitude Probability Distribution and including time distribution information. The problem of determination of site and setup uncertainty and repeatability is also discussed, observing on one hand the lack of clear indications in standards and, on the other hand, the non-ideality and intrinsic variability of measurement conditions (e.g., rolling stock operating conditions, synchronization issues, and electric arc intermittence).


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 75 ◽  
Author(s):  
Jerzy Jozwik ◽  
Krzysztof Dziedzic ◽  
Marcin Barszcz ◽  
Mykhaylo Pashechko

Phenomena occurring in the contact area between two mating bodies are characterised by high complexity and variability. Comparisons are usually made between parameters such as the coefficient of friction, friction force, wear and temperature in relation to time and friction path. Their correct measurement enables the proper evaluation of tribological properties of materials used in the friction pair. This paper concerns the measurements of basic tribological parameters in the friction of selected polymer composites. Knowing the tribological properties of these composite materials, it will be possible to create proper operating conditions for kinematic friction pairs. This study investigated the coefficients of friction, friction force and temperatures of six polymer composites: cast polyamide PA6 G with oil, PA6 G with MoS2, polyoxymethylene POM with aluminium, polyethylene terephthalate PET with polytetrafluoroethylene PTFE, PTFE with bronze, and PTFE with graphite. The friction surface was also examined using an optical system and computer software for 3D measurements. As a result, PA6-G with oil was found to be the best choice as a composite material for thin sliding coatings.


1997 ◽  
Vol 119 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J. T. Sawicki ◽  
R. J. Capaldi ◽  
M. L. Adams

This paper describes an experimental and theoretical investigation of a four-pocket, oil-fed, orifice-compensated hydrostatic bearing including the hybrid effects of journal rotation. The test apparatus incorporates a double-spool-shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. This configuration yields data that enables determination of the full linear anisotropic rotordynamic model. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Theoretical predictions are made for the same configuration and operating conditions as the test matrix using a finite-difference solver of Reynolds lubrication equation. The computational results agree well with test results, theoretical predictions of stiffness and damping coefficients are typically within thirty percent of the experimental results.


Author(s):  
Carlo Cravero ◽  
Mario La Rocca ◽  
Andrea Ottonello

The use of twin scroll volutes in radial turbine for turbocharging applications has several advantages over single passage volute related to the engine matching and to the overall compactness. Twin scroll volutes are of increasing interest in power unit development but the open scientific literature on their performance and modelling is still quite limited. In the present work the performance of a twin scroll volute for a turbocharger radial turbine are investigated in some detail in a wide range of operating conditions at both full and partial admission. A CFD model for the volute have been developed and preliminary validated against experimental data available for the radial turbine. Then the numerical model has been used to generate the database of solutions that have been investigated and used to extract the performance. Different parameters and indices are introduced to describe the volute aerodynamic performance in the wide range of operating conditions chosen. The above parameters can be used for volute development or matching with a given rotor or efficiently implemented in automatic design optimization strategies.


Sign in / Sign up

Export Citation Format

Share Document