scholarly journals Effect of Angular Velocity on Mass Fraction Distribution for Jets Impinging on Airfoil Leading-Edge Cavity

Author(s):  
Amin Safi ◽  
Mohammad O. Hamdan ◽  
Emad Elnajjar
1997 ◽  
Vol 336 ◽  
pp. 379-409 ◽  
Author(s):  
PEDRO L. GARCÍA-YBARRA ◽  
JOSE L. CASTILLO

The concentration distribution of massive dilute species (e.g. aerosols, heavy vapours, etc.) carried in a gas stream in non-isothermal boundary layers is studied in the large-Schmidt-number limit, Sc[Gt ]1, including the cross-mass-transport by thermal diffusion (Ludwig–Soret effect). In self-similar laminar boundary layers, the mass fraction distribution of the dilute species is governed by a second-order ordinary differential equation whose solution becomes a singular perturbation problem when Sc[Gt ]1. Depending on the sign of the temperature gradient, the solutions exhibit different qualitative behaviour. First, when the thermal diffusion transport is directed toward the wall, the boundary layer can be divided into two separated regions: an outer region characterized by the cooperation of advection and thermal diffusion and an inner region in the vicinity of the wall, where Brownian diffusion accommodates the mass fraction to the value required by the boundary condition at the wall. Secondly, when the thermal diffusion transport is directed away from the wall, thus competing with the advective transport, both effects balance each other at some intermediate value of the similarity variable and a thin intermediate diffusive layer separating two outer regions should be considered around this location. The character of the outer solutions changes sharply across this thin layer, which corresponds to a second-order regular turning point of the differential mass transport equation. In the outer zone from the inner layer down to the wall, exponentially small terms must be considered to account for the diffusive leakage of the massive species. In the inner zone, the equation is solved in terms of the Whittaker function and the whole mass fraction distribution is determined by matching with the outer solutions. The distinguished limit of Brownian diffusion with a weak thermal diffusion is also analysed and shown to match the two cases mentioned above.


1965 ◽  
Vol 69 (651) ◽  
pp. 201-202 ◽  
Author(s):  
W. D. Morris

When fluid flows in a tube which rotates about an arbitrary axis, the presence of centripetal and Coriolis acceleration components modify the velocity and pressure fields which exist in the absence of rotation. Barua considered the case of an incompressible fluid flowing in laminar motion through a cylindrical tube which was rotating about an axis perpendicular to itself with uniform angular velocity. For distances well away from the tube entrance Barua illustrated that secondary flow in the r-θ plane occurred and that the axial velocity profile was distorted towards the leading edge of the tube. Since the pressure gradient along the tube is proportional to the gradient of the axial velocity profile at the tube wall the rotation thus has a consequential influence on the resistance to flow offered by the tube.


Author(s):  
Takashi Furusawa ◽  
Hironori Miyazawa ◽  
Satoru Yamamoto

We recently proposed a numerical method for simulating flows of supercritical CO2 based on a preconditioning method and the thermophysical models programed in a program package for thermophysical properties of fluids (PROPATH). In this study, this method is applied to the investigation of cascade channel. Numerical results obtained by assuming supercritical pressure conditions indicate that the normal shock generated in the cascade channel deeply depends on the pressure condition. In particular, the speed of sound varying with the pressure variation at the supercritical state is a key thermophysical property which changes the flow field in the cascade channel. In addition, we also simulate those flows with nonequilibrium condensation in which the inlet pressure and temperature approaching to those of the critical point are specified. Then a nonequilibrium condensation model developed by our group is further applied to the numerical method. CO2 condensation observed in a case indicates that condensation occurs at a local region near the leading edge due to the flow expansion; the droplets soon grow at the local region and streams downward with keeping almost the same mass fraction.


Author(s):  
Zhihao Zhao ◽  
Le Zhao ◽  
Seong-Young Lee

Abstract Spray impingement in internal combustion engines has received great attentions. Such a phenomenon is especially important for diesel spray because the spray and combustion characteristics are significantly altered by the impingement. In this study, numerical investigations of impinged reacting spray jets in a constant volume combustion chamber were performed to understand the spray and flame structure under high pressure and high temperature conditions. The 3-D computational fluid dynamics (CFD) CONVERGE code was selected as the numerical tool to perform Large-eddy simulations (LES) to understand the process of spray combustion-wall interaction. CFD models were validated against experimental results in terms of spray penetration and ignition delay at inert and reacting spray conditions. The temperature and soot mass fraction profiles near the impinging plate were investigated for 900 and 1000 K ambient conditions. It was found that soot mass fraction is generally increased near the impinging plate as the temperature is decreased. The heat transfer from the flame to the plate makes the temperature close to the wall more favorable for soot formation. A dense soot core was observed at the leading edge when the injection was still happening because the vortex there took the opportunity from existing burned gas to new fuel to meet the ambient air. A soot layer was observed stick on the wall as the air was hard to entrain the flame all the way to the plate side.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 119 ◽  
Author(s):  
Zhanwei Wang ◽  
Kun Liu ◽  
Jiuxin Ning ◽  
Shulei Chen ◽  
Ming Hao ◽  
...  

Microdroplet dosing to cell on a chip could meet the demand of narrow diffusion distance, controllable pulse dosing and less impact to cells. In this work, we studied the diffusion process of microdroplet cell pulse dosing in the three-layer sandwich structure of PDMS (polydimethylsiloxane)/PCTE (polycarbonate) microporous membrane/PDMS chip. The mathematical model is established to solve the diffusion process and the process of rhodamine transfer to micro-traps is simulated. The rhodamine mass fraction distribution, pressure field and velocity field around the microdroplet and cell surfaces are analyzed for further study of interdiffusion and convective diffusion effect. The cell pulse dosing time and drug delivery efficiency could be controlled by adjusting microdroplet and culture solution velocity without impairing cells at micro-traps. Furthermore, the accuracy and controllability of the cell dosing pulse time and maximum drug mass fraction on cell surfaces are achieved and the drug effect on cells could be analyzed more precisely especially for neuron cell dosing.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zijun Li ◽  
Shuqi Zhao ◽  
Rongrong Li ◽  
Yilong Huang ◽  
Yu Xu ◽  
...  

Hypoxia problem has always been a difficult point in plateau tunneling projects. To solve this problem, a blind heading face in a plateau metal mine in western China was taken as the physical model, and the computational fluid dynamics was used to analyze the oxygen mass fraction distribution and oxygen-increasing effect in 1 m, 3 m, and 5 m roadway sections from the heading face. The optimal ventilation system was first built to obtain the optimum height and length of the airflow ducts. Then different cases with various oxygen supply duct designs were built in 2 scenarios. The results found that different oxygen supply duct design has significant influence on the oxygen distribution in the heading face. Also, each design has different optimal height of oxygen outlet. The oxygen supply effect is best when some small holes are made in the oxygen supply duct to diffuse oxygen to the working surface. The finding of this paper is helpful for effective and economical oxygen supply in roadway excavation of plateau metal mine and tunnel.


2018 ◽  
Vol 81 (1) ◽  
pp. 11102 ◽  
Author(s):  
Babacar Diouf ◽  
Sandrine Geoffroy ◽  
Ariane Abou Chakra ◽  
Marc Prat

The evaporation of a saline solution from a heterogeneous porous medium formed by the assembly of a coarse medium column and a fine medium column is studied numerically. We concentrate on the locus of the formation of first crystals on the evaporative surface from the computation of the ion mass fraction distribution at the surface prior to the efflorescence development. Two basic situations considered in previous works, namely the evaporation–wicking situation and the drying situation are considered. The study makes clear that each situation leads to a markedly different locus of the efflorescence formation, except, however, for very high initial salt concentrations. The study emphasizes the key-role of the velocity field induced in the porous domain in the case of the evaporation–wicking situation. In the case of the drying situation, a key aspect lies in the local increase in the ion mass fraction due to the local desaturation, i.e. the local shrinking of the liquid volume containing the ions.


Sign in / Sign up

Export Citation Format

Share Document