solution velocity
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Hamed Sarkardeh ◽  
Morteza Marosi

Abstract In the present paper, free surface vortex formation at intakes is investigated analytically. By assuming a spiral form for vortex streamlines, continuity and momentum equations were integrated and solved in a vortex flow domain. From this solution, velocity and pressure distributions were found above the intake under vortex action. An equation for the water surface profile was also found and compared with another research. By considering that in an air core vortex, pressure at the intake entrance drops to zero, a relationship was found for critical submerged depth and verified by experimental data and another analytical equation. It was concluded that the results of the proposed spiral analytical model had good agreement with the experimental data.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 54 ◽  
Author(s):  
Viktor A. Rukavishnikov ◽  
Alexey V. Rukavishnikov

In the paper, a new numerical approach for the rotation form of the Oseen system in a polygon Ω with an internal corner ω greater than 180 ∘ on its boundary is presented. The results of computational simulations have shown that the convergence rate of the approximate solution (velocity field) by weighted FEM to the exact solution does not depend on the value of the internal corner ω and equals O ( h ) in the norm of a space W 2 , ν 1 ( Ω ) .


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 119 ◽  
Author(s):  
Zhanwei Wang ◽  
Kun Liu ◽  
Jiuxin Ning ◽  
Shulei Chen ◽  
Ming Hao ◽  
...  

Microdroplet dosing to cell on a chip could meet the demand of narrow diffusion distance, controllable pulse dosing and less impact to cells. In this work, we studied the diffusion process of microdroplet cell pulse dosing in the three-layer sandwich structure of PDMS (polydimethylsiloxane)/PCTE (polycarbonate) microporous membrane/PDMS chip. The mathematical model is established to solve the diffusion process and the process of rhodamine transfer to micro-traps is simulated. The rhodamine mass fraction distribution, pressure field and velocity field around the microdroplet and cell surfaces are analyzed for further study of interdiffusion and convective diffusion effect. The cell pulse dosing time and drug delivery efficiency could be controlled by adjusting microdroplet and culture solution velocity without impairing cells at micro-traps. Furthermore, the accuracy and controllability of the cell dosing pulse time and maximum drug mass fraction on cell surfaces are achieved and the drug effect on cells could be analyzed more precisely especially for neuron cell dosing.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Lingmin Xu ◽  
Qinchuan Li ◽  
Ningbin Zhang ◽  
Qiaohong Chen

Parallel manipulators (PMs) with redundant actuation are attracting increasing research interest because they have demonstrated improved stiffness and fewer singularities. This paper proposes a new redundantly actuated parallel manipulator that has three degrees-of-freedom (DOFs) and four limbs. The proposed manipulator is a 2UPR-2PRU parallel manipulator (where P represents an actuated prismatic joint, R represents a revolute joint, and U represents a universal joint) that is actuated using four prismatic joints; two of these joints are mounted on the base to reduce the movable mass. Mobility analysis shows that the moving platform has two rotational DOFs and one translational DOF. First, the inverse displacement solution, velocity, and singularity analyses are discussed. Next, the local transmission index (LTI) and the good transmission workspace are used to evaluate the motion/force transmissibility of the 2UPR-2PRU parallel manipulator. Finally, the parameter-finiteness normalization method (PFNM) is used to produce an optimal design that considers the good transmission workspace. It is thus shown that the motion/force transmission of the proposed manipulator is improved by optimizing the link parameters.


2014 ◽  
Vol 693 ◽  
pp. 68-73
Author(s):  
Helena Kravarikova

The process of mixing materials is a very complex process. The mixing process is used for homogenisation of substances. Rather than propose a real mixer, you must first construct a mixer for operational purposes experimental solutions. Experimental solutions are most often realized in laboratory conditions. Experimental mixers are made according to the requirements of power mixers, fluid flow, density and viscosity of the mixed fluid. To investigate the mixing process in the Laboratory mixers are made on the basis of the criteria of non-dimensional simplex. For designing operating mixers can also use analytical solutions of technical equipment and the mixing process. It is now possible to implement solutions using FEM numerical simulation of this phenomenon.The homogeneity of the mixed substances, mixer performs rotational movement about the axis of rotation. In most cases, the rotational movement of the stirrer describes the geometrical shape of the mixer. Usually rotation axis Mixer is the axis of symmetry. The shape and dimensions of the stirrer depends on the desired performance of mixer, the type of flow, the type and quantity of mixed materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Muhammad Qasim ◽  
Ilyas Khan ◽  
Sharidan Shafie

Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.


2011 ◽  
Vol 110-116 ◽  
pp. 4719-4722
Author(s):  
V. Parthiban ◽  
Ashwin Russelle

In order to predict a turbulent flow around a triangular cylinder a high Reynolds number of 45000 is done in the numerical simulation. In this simulation both steady and unsteady vortex shedding is predicted and various time steps. The numerical method used in this simulation is Reynolds Stress model. For steady and unsteady solution velocity contours and velocity vector plots is to be predicted for the vortex shedding behind the triangular cylinder.


2008 ◽  
Vol 33-37 ◽  
pp. 1303-1306
Author(s):  
Hajime Adachi ◽  
Kazuhiro Suga ◽  
Masanori Hayase ◽  
Shigeru Aoki

A numerical simulation of corrosion in a tube is performed with the solution velocity effect taken into account. A two dimensional tube, the cross-section of which is widening or narrowing with increase in distance, is considered. The velocity distribution in the tube is calculated with the Finite Volume Method (Open FOAM), and the derivatives of velocity with respect to the distance from the tube wall is determined at any location of the tube. The corrosion rate of the tube wall is estimated under the assumption that the corrosion rate depends on the velocity gradient, i.e. , it is estimated by solving the Laplace equation under the boundary conditions given with the polarization curves measured under various velocity gradients. The Boundary Element Method (3D-CAFE) is used to solve the Laplace equation. It is shown that the distribution of corrosion rate, including the maximum corrosion rate and its location, is different between the widening and narrowing tubes, even if the average velocities in the two tubes are equal.


Sign in / Sign up

Export Citation Format

Share Document