Negative electron affinity group III-nitride photocathode demonstrated as a high performance electron source

Author(s):  
Francisco Machuca ◽  
Zhi Liu ◽  
J. R. Maldonado ◽  
S. T. Coyle ◽  
P. Pianetta ◽  
...  
2011 ◽  
Vol 9 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Jianliang Qiao ◽  
Benkang Chang ◽  
Yunsheng Qian ◽  
Xiaohui Wang ◽  
Biao Li ◽  
...  

2000 ◽  
Vol 639 ◽  
Author(s):  
Isamu Akasaki

ABSTRACTWide bandgap group-III nitride semiconductors are currently experiencing the most exciting development. High brightness blue and green light emitting diodes (LEDs) are commercialized, and UV and blue laser diodes (LDs), high-speed transistors (TRs) and UV photodetectors (PDs) with low dark current, which will be able to operate in harsh environments, have been demonstrated. In this paper, renaissance and progress in crystal growth and conductivity control of nitride semiconductors in the last quarter century are reviewed as the groundwork for all of those high-performance devices. My personal history of nitride research will be also introduced.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hwan-Seop Yeo ◽  
Kwanjae Lee ◽  
Young Chul Sim ◽  
Seoung-Hwan Park ◽  
Yong-Hoon Cho

Abstract Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.


2016 ◽  
Vol 6 (2) ◽  
pp. Q3067-Q3070 ◽  
Author(s):  
J. D. Greenlee ◽  
A. Nath ◽  
T. J. Anderson ◽  
B. N. Feigelson ◽  
A. D. Koehler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document