Study on structure optimization of a piezoelectric cantilever with a proof mass for vibration-powered energy harvesting system

Author(s):  
Yanning Li ◽  
Wen Li ◽  
Tong Guo ◽  
Zhidan Yan ◽  
Xing Fu ◽  
...  
Author(s):  
Henrik Westermann ◽  
Marcus Neubauer ◽  
Jörg Wallaschek

This article illustrates the modeling of a piezomagnetoelastic energy harvesting system. The generator consists of a piezoelectric cantilever with a magnetic tip mass. A second oppositely poled magnet is attached near the free end of the beam. Due to the nonlinear magnetic restoring force the system exhibits two symmetric stable equilibrium positions and one instable equilibrium position. The equation of motion is derived and it is shown that the system can be modeled as Duffing oscillator. An analytical approach is given to derive the Duffing parameters from the system parameters. The Duffing equation is solved for an oscillation around both equilibrium positions by using the harmonic balance method. For small orbit oscillations the equation of motion is solved by applying the fourth-order multiple scales method.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 639 ◽  
Author(s):  
Manjuan Huang ◽  
Cheng Hou ◽  
Yunfei Li ◽  
Huicong Liu ◽  
Fengxia Wang ◽  
...  

This paper proposes an impact-based micro piezoelectric energy harvesting system (PEHS) working with the frequency up-conversion mechanism. The PEHS consists of a high-frequency straight piezoelectric cantilever (SPC), a low-frequency S-shaped stainless-steel cantilever (SSC), and supporting frames. During the vibration, the frequency up-conversion behavior is realized through the impact between the bottom low-frequency cantilever and the top high-frequency cantilever. The SPC used in the system is fabricated using a new micro electromechanical system (MEMS) fabrication process for a piezoelectric thick film on silicon substrate. The output performances of the single SPC and the PEHS under different excitation accelerations are tested. In the experiment, the normalized power density of the PEHS is 0.216 μW·g−1·Hz−1·cm−3 at 0.3 g acceleration, which is 34 times higher than that of the SPC at the same acceleration level of 0.3 g. The PEHS can improve the output power under the low frequency and low acceleration scenario.


2019 ◽  
Vol 11 (20) ◽  
pp. 5582 ◽  
Author(s):  
Isarakorn ◽  
Jayasvasti ◽  
Panthongsy ◽  
Janphuang ◽  
Hamamoto

This paper introduces the design and characterization of a double-stage energy harvesting floor tile that uses a piezoelectric cantilever to generate electricity from human footsteps. A frequency up-conversion principle, in the form of an overshooting piezoelectric cantilever, plucked with a proof mass is utilized to increase energy conversion efficiency. The overshoot of the proof mass is implemented by a mechanical impact between a moving cover plate and a stopper to prevent damage to the plucked piezoelectric element. In an experiment, the piezoelectric cantilever of a floor tile prototype was excited by a pneumatic actuator that simulated human footsteps. The key parameters affecting the electrical power and energy outputs were investigated by actuating the prototype with a few kinds of excitation input. It was found that, when actuated by a single simulated footstep, the prototype was able to produce electrical power and energy in two stages. The cantilever resonated at a frequency of 14.08 Hz. The output electricity was directly proportional to the acceleration of the moving cover plate and the gap between the cover plate and the stopper. An average power of 0.82 mW and a total energy of 2.40 mJ were obtained at an acceleration of 0.93 g and a gap of 4 mm. The prototype had a simple structure and was able to operate over a wide range of frequencies.


2013 ◽  
Vol 655-657 ◽  
pp. 816-822
Author(s):  
Jun Jie Gong ◽  
Ying Ying Xu ◽  
Zhi Lin Ruan ◽  
Long Chao Dai

The bimorph piezoelectric cantilever model for vibration energy harvesting was established to analyse its natural frequency and generating performance according to Euler-Bernoulli theory. The influence of the length and thickness of piezoelectric cantilever on natural frequency and generating voltage was discussed by computing the cantilever equivalent stiffness. Experimental investigation was performed to measure its natural frequency and output generating voltage of bimorph piezoelectric cantilever, and the effect of cantilever with different proof mass and structural parameters on generating performance was also analysed. Theoretical results of bimorph piezoelectric cantilever are compared with experimental results qualitatively, good correlations are observed.


2018 ◽  
Vol 24 (8) ◽  
pp. 6030-6033
Author(s):  
Garima Thakur ◽  
V Velmurugan

Energy harvesting is a very attractive method in all the applications where battery replacement or recharging is difficult. We can harvest energy using environmental vibrations caused because of frequencies that are present naturally in our environment. Vibration energy can scavenge energy from mechanical vibrations to energies low power electronic devices. Low frequencies energy harvesting system can begin to replace batteries in certain wearable devices. As piezoelectric vibration based energy harvester and do not require external voltage and also they are not expensive making them feasible alternative to implement energy harvesting. In this paper we are investigating a bimorph piezoelectric cantilever geometry by using COMSOL Multiphysics 5.2. Material used is Lead Zirconate Titanate (PZT 5A), and stainless steel.


Author(s):  
Yu-Yang Zhang ◽  
Yong-Gang Leng ◽  
Sheng-Bo Fan

In the study of nonlinear bi-stable piezoelectric cantilever energy harvesting system, the accuracy of magnetic force’s calculation on which the potential function and dynamics of the system depend is essential to predict the output response and energy harvesting effect. In this paper, we built a shape function to calculate the trace of the end of the beam with the integral of the entire cantilever beam’s slope, and the magnetic force is consequently derived from the achieved magnets’ real-time position and posture using the magnetizing currents method. With the comprehensive consideration of axial magnetic force and lateral magnetic force, the change of both resultant magnetic force’s value and direction are achieved. The simulation results demonstrate that when the displacement of the magnet at the end of the beam is large enough, the axial and lateral magnetic forces change turn from repulsion to attraction, which leads to a large veer of the direction of resultant magnetic force across two quadrants. And the relationship between magnetic force and interval between two magnets is also achieved. The calculation results of this work are nicely consistent with experimental data. So, the accuracy of this calculation method has been proved to be much higher than the existing calculation method.


Sign in / Sign up

Export Citation Format

Share Document