Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

2015 ◽  
Vol 33 (1) ◽  
pp. 01A148 ◽  
Author(s):  
Amit Vaish ◽  
Susan Krueger ◽  
Michael Dimitriou ◽  
Charles Majkrzak ◽  
David J. Vanderah ◽  
...  
Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 403 ◽  
Author(s):  
Luis Fernández-Menéndez ◽  
Ana González ◽  
Víctor Vega ◽  
Víctor de la Prida

In this work, the entire manufacturing process of electrostatic supercapacitors using the atomic layer deposition (ALD) technique combined with the employment of nanoporous anodic alumina templates as starting substrates is reported. The structure of a usual electrostatic capacitor, which comprises a top conductor electrode/the insulating dielectric layer/and bottom conductor electrode (C/D/C), has been reduced to nanoscale size by depositing layer by layer the required materials over patterned nanoporous anodic alumina membranes (NAAMs) by employing the ALD technique. A thin layer of aluminum-doped zinc oxide, with 3 nm in thickness, is used as both the top and bottom electrodes’ material. Two dielectric materials were tested; on the one hand, a triple-layer made by a successive combination of 3 nm each layers of silicon dioxide/titanium dioxide/silicon dioxide and on the other hand, a simple layer of alumina, both with 9 nm in total thickness. The electrical properties of these capacitors are studied, such as the impedance and capacitance dependences on the AC frequency regime (up to 10 MHz) or capacitance (180 nF/cm2) on the DC regime. High breakdown voltage values of 60 V along with low leakage currents (0.4 μA/cm2) are also measured from DC charge/discharge RC circuits to determine the main features of the capacitors behavior integrated in a real circuit.


2005 ◽  
Vol 901 ◽  
Author(s):  
Mårten Rooth ◽  
Anders Johansson ◽  
Mats Boman ◽  
Anders Hårsta

AbstractAmorphous niobium oxide (Nb2O5) nano-tubes were fabricated inside anodic alumina templates using atomic layer deposition (ALD). The nanoporous templates were in-house fabricated anodic alumina membranes having an inter-pore distance of about 100 nm with pores lengths of 2 µm. The pores were parallel and well ordered in a hexagonal pattern. Atomic layer deposition was performed using gas pulses of niobium iodide (NbI5) and oxygen separated by purging pulses of argon. By employing long gas pulses (30 s) it was possible to get coherent and amorphous Nb2O5 films conformally covering the pore-walls of the alumina template. The outer diameter of the nano-tubes was tailored between 40 and 80 nm by using alumina templates with different pore sizes. By using template membranes with pores not opened in the bottom, nano-tubes with one side closed could be fabricated. Free-standing, and still parallel, nano-tubes could be obtained by selectively etching away the alumina template using phosphoric acid. Using the above mentioned procedure it was possible to fabricate unsurpassed parallel niobium oxide nano-tubes of equal length, diameter and wall-thickness, ordered in a perfect hexagonal pattern. The samples were analysed using high resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), electron diffraction and x-ray fluorescence spectroscopy (XRFS).


2003 ◽  
Vol 15 (18) ◽  
pp. 3507-3517 ◽  
Author(s):  
J. W. Elam ◽  
D. Routkevitch ◽  
P. P. Mardilovich ◽  
S. M. George

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5052
Author(s):  
Ana Silvia González ◽  
Víctor Vega ◽  
Ana Laura Cuevas ◽  
María del Valle Martínez de Yuso ◽  
Víctor M. Prida ◽  
...  

Changes associated to atomic layer deposition (ALD) of SiO2 from 3-aminopropyl triethoxysilane (APTES) and O3, on a nanoporous alumina structure, obtained by two-step electrochemical anodization in oxalic acid electrolyte (Ox sample) are analysed. A reduction of 16% in pore size for the Ox sample, used as support, was determined by SEM analysis after its coverage by a SiO2 layer (Ox+SiO2 sample), independently of APTES or O3 modification (Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples). Chemical surface modification was determined by X-ray photoelectron spectroscopy (XPS) technique during the different stages of the ALD process, and differences induced at the surface level on the Ox nanoporous alumina substrate seem to affect interfacial effects of both samples when they are in contact with an electrolyte solution according to electrochemical impedance spectroscopy (EIS) measurements, or their refraction index as determined by spectroscopic ellipsometry (SE) technique. However, no substantial differences in properties related to the nanoporous structure of anodic alumina (photoluminescent (PL) character or geometrical parameters) were observed between Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples.


Sign in / Sign up

Export Citation Format

Share Document