In situ high‐resolution atomic force microscope imaging of biological surfaces

1996 ◽  
Vol 14 (3) ◽  
pp. 674-678 ◽  
Author(s):  
I. Yu. Sokolov ◽  
M. Firtel ◽  
G. S. Henderson
2001 ◽  
Vol 2 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Thomas Kaasgaard ◽  
Chad Leidy ◽  
John Hjort Ipsen ◽  
Ole G. Mouritsen ◽  
Kent Jørgensen

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jizhong He

We have developed a novel instrument combining a glide tester with an Atomic Force Microscope (AFM) for hard disk drive (HDD) media defect test and analysis. The sample stays on the same test spindle during both glide test and AFM imaging without losing the relevant coordinates. This enables an in situ evaluation with the high-resolution AFM of the defects detected by the glide test. The ability for the immediate follow-on AFM analysis solves the problem of relocating the defects quickly and accurately in the current workflow. The tool is furnished with other functions such as scribing, optical imaging, and head burnishing. Typical data generated from the tool are shown at the end of the paper. It is further demonstrated that novel experiments can be carried out on the platform by taking advantage of the correlative capabilities of the tool.


Author(s):  
Francesca Zuttion ◽  
Lorena Redondo-Morata ◽  
Arin Marchesi ◽  
Ignacio Casuso

2016 ◽  
Vol 87 (7) ◽  
pp. 073702 ◽  
Author(s):  
H. von Allwörden ◽  
K. Ruschmeier ◽  
A. Köhler ◽  
T. Eelbo ◽  
A. Schwarz ◽  
...  

2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


FEBS Letters ◽  
1996 ◽  
Vol 390 (2) ◽  
pp. 161-164 ◽  
Author(s):  
S. Allen ◽  
J. Davies ◽  
A.C. Dawkes ◽  
M.C. Davies ◽  
J.C. Edwards ◽  
...  

Molecules ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Jiye Cai ◽  
Yao Chen ◽  
Qingcai Xu ◽  
Yong Chen ◽  
Tao Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document