scholarly journals High-Resolution and High-Speed Atomic Force Microscope Imaging

Author(s):  
Francesca Zuttion ◽  
Lorena Redondo-Morata ◽  
Arin Marchesi ◽  
Ignacio Casuso
2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Xu ◽  
Qiang An ◽  
Peng Li

: The atomic force microscope (AFM) is widely used in many fields such as biology, materials, and physics due to its advantages of simple sample preparation, high-resolution topography measurement and wide range of applications. However, the low scanning speed of traditional AFM limits its dynamics process monitoring and other further application. Therefore, the improvement of AFM scanning speed has become more and more important. In this review, the working principle of AFM is first proposed. Then, we introduce the improvements of cantilever, drive mechanism, and control method of the high-speed atomic force microscope (HS-AFM). Finally, we provide the next developments of HS-AFM.


Author(s):  
Ying Wu ◽  
Qingze Zou

This article presents an iterative-based feedforward-feedback control approach to achieve high-speed atomic force microscope (AFM) imaging. AFM-imaging requires precision positioning of the probe relative to the sample in all x-y-z axes directions. Particularly, this article is focused on the vertical z-axis positioning. Recently, a current-cycle-feedback iterative-learning-control (CCF-ILC) approach has been developed for precision tracking of a given desired trajectory (even when the desired trajectory is unknown), which can be applied to achieve precision tracking of sample profile on one scanline. In this article, we extend this CCF-ILC approach to imaging of entire sample area. The main contribution of this article is the convergence analysis and the use of the CCF-ILC approach for output tracking in the presence of desired trajectory varation between iterations—the sample topography variations between adjacent scanlines. For general case where the desired trajectory variation occurs between any two successive iterations, the convergence (stability) of the CCF-ILC system is addressed and the allowable size of desired trajectory variation is quantified. The performance improvement achieved by using the CCF-ILC approach is discussed by comparing the tracking error of using the CCF-ILC technique to that of using feedback control alone. The efficacy of the proposed CCF-ILC control approach is illustrated by implementing it to the z-axis control during AFM-imaging. Experimental results are presented to show that the AFM-imaging speed can be substantially increased.


2014 ◽  
Vol 90 (1) ◽  
Author(s):  
Juan Ren ◽  
Qingze Zou ◽  
Bo Li ◽  
Zhiqun Lin

Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Sign in / Sign up

Export Citation Format

Share Document