Electrical properties of ideal metal contacts to GaAs: Schottky-barrier height

Author(s):  
J. R. Waldrop
1988 ◽  
Vol 52 (21) ◽  
pp. 1794-1796 ◽  
Author(s):  
J. R. Waldrop ◽  
R. W. Grant

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sachin Gupta ◽  
F. Rortais ◽  
R. Ohshima ◽  
Y. Ando ◽  
T. Endo ◽  
...  

AbstractTwo-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic properties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage (Vg) shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (at Vg = 0V), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of positive gate voltage, SBH shows a reduction, which reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.


2006 ◽  
Vol 527-529 ◽  
pp. 923-926 ◽  
Author(s):  
Masataka Satoh ◽  
H. Matsuo

The Schottky barrier height (SBH) of Al, Ti, Au, and Ni contacts to n- and p-type 3C-SiC is investigated by means of I-V and C-V measurements. All metal contacts to n- (net donor concentration: 1.0 x 1016 /cm3) and p-type (net acceptor concentration: 4 x 1016 /cm3) 3C-SiC show the rectifying I-V characteristics except for Al contact to n-type 3C-SiC. Only Al contact to n-type 3C-SiC shows the ohmic characteristics. As the work function of metal is increased from 4.3 (Ti) to 5.2 (Ni) eV, SBH for n-type 3C-SiC is increased from 0.4 to 0.7 eV and SBH for p-type 3C-SiC is decreased from 2.2 to 1.8 eV. The small change of SBH for 3C-SiC may be correlated to the crystal orientation and the defects on the surface of 3C-SiC.


2011 ◽  
Vol 98 (9) ◽  
pp. 092113 ◽  
Author(s):  
J.-Y. Jason Lin ◽  
Arunanshu M. Roy ◽  
Aneesh Nainani ◽  
Yun Sun ◽  
Krishna C. Saraswat

1989 ◽  
Vol 148 ◽  
Author(s):  
J.R. Waldrop ◽  
R.W. Grant

ABSTRACTA new approach for extending the range of the Schottky barrier height ϕB of metal contacts to (100) GaAs is described. Very thin (∼ 10-30Å) heavily n-type and p-type Si or Ge interlayers are found to directly alter the GaAi interface Fermi energy EF. X-ray photoemission spectroscopy is used to determine EF during contact formation and the corresponding ϕB for thick contacts is measured by electrical methods. In an appropriate structure the ϕB range for contacts to n-type GaAs is ∼ 0.25 to 1.0 eV. For p-type GaAs ϕB has been increased to as much as 0.9 eV. This method of ϕBcontrol can be used for both Schottky barrier contact and nonalloyed ohmic contact applications. The results are interpreted in terms of a simple heterojunction model.


1998 ◽  
Vol 512 ◽  
Author(s):  
W. Lu ◽  
D. T. Shi ◽  
W. E. Collins ◽  
H. Chen ◽  
A. Burger

ABSTRACTPd/SiC has been used as a high temperature hydrocarbon and hydrogen gas sensor in environmental and aeronautical applications. In this work, the relationships between diffusion, reaction, and interfacial chemical composition with electrical properties for Pd ultra-thin films on 6H-SiC (∼< 30Å) are studied at different annealing temperatures.Ultra-thin film Pd on 6H-SiC has been prepared by the RF sputtering method. The Schottky barrier heights are measured by XPS for an unannealed sample and samples annealed from 100°C to 400°C for 30 minutes, respectively. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range. The morphology from UHV-STM and AFM show that the unannealed Pd thin film had good uniformity across the SiC substrate, and the Pd has dispersed, and then partially aggregated into rounded shaped precipitates with increasing annealing temperatures. At 400°C, all Pd metal has reacted and formed to silicides. From XPS, Pd2Si was found on the surface after annealing, and almost all Pd has reacted to become Pd2Si after annealing at 400°C. No other silicide was found. The intensity of Pd on XPS decreases enormously at 400°C. This is explained if Pd has diffused into SiC. The Pd diffusion and the formation of Pd silicides do not significantly affect the Schottky barrier height. The SiO2 was found at the top of surface after annealing, and increased in amount with increasing annealing temperature. The SiO2 formation was accelerated by the presence of Pd. Pd may play a role in absorbing oxygen, and activating Si from SiC to form SiO2.Key Words: Pd thin film, SiC, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document