Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

2015 ◽  
Vol 21 (7) ◽  
pp. 071105 ◽  
Author(s):  
Katsuhiro Kanamori
Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Wentao Qin ◽  
Dorai Iyer ◽  
Jim Morgan ◽  
Carroll Casteel ◽  
Robert Watkins ◽  
...  

Abstract Ni(5 at.%Pt ) films were silicided at a temperature below 400 °C and at 550 °C. The two silicidation temperatures had produced different responses to the subsequent metal etch. Catastrophic removal of the silicide was seen with the low silicidation temperature, while the desired etch selectivity was achieved with the high silicidation temperature. The surface microstructures developed were characterized with TEM and Auger depth profiling. The data correlate with both silicidation temperatures and ultimately the difference in the response to the metal etch. With the high silicidation temperature, there existed a thin Si-oxide film that was close to the surface and embedded with particles which contain metals. This thin film is expected to contribute significantly to the desired etch selectivity. The formation of this layer is interpreted thermodynamically.


2003 ◽  
Author(s):  
Andrew D. Maidment
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jia Hao ◽  
Yan Wang ◽  
Kui Zhou ◽  
Xiaochang Yu ◽  
Yiting Yu

AbstractThe design of micropolarizer array (MPA) patterns in Fourier domain provides an efficient approach to reconstruct and investigate the polarization information. Inspired by Alenin’s works, in this paper, we propose an improved design model to cover both 2 × N MPAs and other original MPAs, by which an entirely new class of MPA patterns is suggested. The performance of the new patterns is evaluated through Fourier domain analysis and numerical simulations compared with the existing MPAs. Particularly, we analyze the reconstruction accuracy of the first three Stokes parameters and degree of linear polarization (DoLP) in detail. The experimental results confirm that the 2 × 2 × 2 MPA provides the highest reconstruction quality of s0, s1, s2 and DoLP in terms of quantitative measures and visual quality, while the 3 × 3 diagonal MPA achieves the state-of-the-art best results in case of single-snapshot systems. The guidance of this extended model and new diagonal MPAs show its massive potential for the division of focal plane (DoFP) polarization imaging applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter M. Schutjens ◽  
Christopher J. Spiers ◽  
André Rik Niemeijer

AbstractIntergranular pressure solution plays a key role as a deformation mechanism during diagenesis and in fault sealing and healing. Here, we present microstructural observations following experiments conducted on quartz aggregates under conditions known to favor pressure solution. We conducted two long term experiments in which a quartz crystal with polished faces of known crystallographic orientation was embedded in a matrix of randomly oriented quartz sand grains. For about two months an effective axial stress of 15 MPa was applied in one experiment, and an effective confining pressure of 28 MPa in the second. Loading occurred at 350 °C in the presence of a silica-saturated aqueous solution. In the first experiment, quartz sand grains in contact with polished quartz prism ($$\overline10{1 }0$$ 1 ¯ 010 ) faces became ubiquitously truncated against these faces, without indenting or pitting them. By contrast, numerous sand-grain-shaped pits formed in polished pyramidal ($$17\overline{6 }3$$ 17 6 ¯ 3 ) and ($$\overline{4 }134$$ 4 ¯ 134 ) crystal faces in the second experiment. In addition, four-leaved and (in some cases) three-leafed clover-shaped zones of precipitation formed on these prism faces, in a consistent orientation and pattern around individual pits. The microstructures observed in both experiments were interpreted as evidence for the operation of intergranular pressure solution. The dependence of the observed indentation/truncation microstructures on crystal face orientation can be explained by crystallographic control of stress-induced quartz dissolution kinetics, in line with previously published experimental and petrographic data, or possibly by an effect of contact orientation on the stress-induced driving force for pressure solution. This should be investigated in future experiments, providing data and microstructures which enable further mechanism-based analysis of deformation by pressure solution and the effect of crystallographic control on its kinetics in quartz-rich sands and sandstones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayse N. Koyun ◽  
Julia Zakel ◽  
Sven Kayser ◽  
Hartmut Stadler ◽  
Frank N. Keutsch ◽  
...  

AbstractSurface microstructures of bitumen are key sites in atmospheric photo-oxidation leading to changes in the mechanical properties and finally resulting in cracking and rutting of the material. Investigations at the nanoscale remain challenging. Conventional combination of optical microscopy and spectroscopy cannot resolve the submicrostructures due to the Abbe restriction. For the first time, we report here respective surface domains, namely catana, peri and para phases, correlated to distinct molecules using combinations of atomic force microscopy with infrared spectroscopy and with correlative time of flight—secondary ion mass spectrometry. Chemical heterogeneities on the surface lead to selective oxidation due to their varying susceptibility to photo-oxidation. It was found, that highly oxidized compounds, are preferentially situated in the para phase, which are mainly asphaltenes, emphasising their high oxidizability. This is an impressive example how chemical visualization allows elucidation of the submicrostructures and explains their response to reactive oxygen species from the atmosphere.


Optik ◽  
2019 ◽  
Vol 198 ◽  
pp. 163309
Author(s):  
Meilin Xie ◽  
Peng Liu ◽  
Caiwen Ma ◽  
Wei Hao ◽  
Wei Huang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Jun Zhang ◽  
Huabo Li ◽  
Hairui Yao ◽  
Hao Zhang

The photooxidation process of aniline-containing simulated wastewater under visible light irradiation over BiOBr microcrystal grains with different shapes was studied. The distinctive surface microstructures of the BiOBr microcrystals, like clustered flower petals and quadrate lamellas, were produced by using imidazole ionic liquid and inorganic bromide as Br sources and by solvothermal and hydrothermal route, respectively. The ionic liquid not only can impact the products’ morphology, but also can largely improve the photocatalytic activity of the BiOBr microcrystals due to the soft templating effect. The top degradation ratio of the aniline wastewater photocatalyzed by lamellar BiOBr crystals is 23.71%, but the equivalent value photocatalyzed by flower petal-like BiOBr crystals is almost twice as much; that is, it reaches 46.51%. The photodegradation effect and mechanism over differently shaped BiOBr microcrystals have been compared.


2010 ◽  
Vol 173 (1-3) ◽  
pp. 267-270 ◽  
Author(s):  
Ken-ichi Katsumata ◽  
Christopher E.J. Cordonier ◽  
Tetsuya Shichi ◽  
Akira Fujishima

Sign in / Sign up

Export Citation Format

Share Document