Surface plasmon spectroscopy study of electron exchange between single gold nanorods and metal oxide matrix during hydrogen gas sensing (Presentation Recording)

2015 ◽  
Author(s):  
Michela Cittadini ◽  
Sean Collins ◽  
Paul Mulvaney ◽  
Alessandro Martucci
ACS Nano ◽  
2015 ◽  
Vol 9 (8) ◽  
pp. 7846-7856 ◽  
Author(s):  
Sean S. E. Collins ◽  
Michela Cittadini ◽  
Carlos Pecharromán ◽  
Alessandro Martucci ◽  
Paul Mulvaney

2013 ◽  
Vol 1552 ◽  
pp. 77-82 ◽  
Author(s):  
Enrico Della Gaspera ◽  
Alessandro Martucci

ABSTRACTThe oscillatory change in the optical absorbance of NiO-TiO2 film containing Au nanoparticles in the presence of H2S gas are investigated. The oscillatory phenomena could be monitored by looking at the variation of the surface plasmon resonance peak of the Au nanoparticles embedded in the TiO2-NiO matrix. Au nanoparticles act as optical probes in the detection of H2S, while the oxide matrix is responsible for the catalytic oxidation of H2S. To the best of our knowledge, it is the first time that oscillatory phenomena are monitored by optical spectroscopy.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 902 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Kim ◽  
Sang Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1−x)ZnO-xNiO (x = 0.03, 0.05, 0.7, 0.1, and 0.15 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1 − x) ZnO-xNiO (x = 0.03, 0.05, and 0.1 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


2021 ◽  
Author(s):  
Yushu Shi ◽  
Huiyan Xu ◽  
Tongyao Liu ◽  
Shah Zeb ◽  
Yong Nie ◽  
...  

The scheme of the structure of this review includes an introduction from the metal oxide nanomaterials’ synthesis to application in H2 gas sensors—a vision from the past to the future.


2021 ◽  
pp. 160671
Author(s):  
Siti Amaniah Mohd Chachuli ◽  
Mohd Nizar Hamidon ◽  
Mehmet Ertugrul ◽  
Md.Shuhazlly Mamat ◽  
Omer Coban ◽  
...  

2010 ◽  
Vol 99 (12) ◽  
pp. 4028-4036 ◽  
Author(s):  
Victor Yashunsky ◽  
Vladislav Lirtsman ◽  
Michael Golosovsky ◽  
Dan Davidov ◽  
Benjamin Aroeti

RSC Advances ◽  
2014 ◽  
Vol 4 (36) ◽  
pp. 18512 ◽  
Author(s):  
Pratanu Nag ◽  
Sanhita Majumdar ◽  
Ali Bumajdad ◽  
Parukuttyamma Sujatha Devi

2011 ◽  
Vol 22 (26) ◽  
pp. 265705 ◽  
Author(s):  
S L Smitha ◽  
K G Gopchandran ◽  
T R Ravindran ◽  
V S Prasad

Sign in / Sign up

Export Citation Format

Share Document