Laser-assisted reduction of graphene oxide for paper based large area flexible electronics

2016 ◽  
Author(s):  
E. Balliu ◽  
H. Andersson ◽  
M. Engholm ◽  
S. Forsberg ◽  
H. Olin
2017 ◽  
Vol 5 (1) ◽  
pp. 220-228 ◽  
Author(s):  
Jinhui Li ◽  
Guoping Zhang ◽  
Rong Sun ◽  
Ching-Ping Wong

A novel composite of reduced functionalized graphene oxide/polyurethane based on Diels–Alder chemistry was developed which could be healed microwaves with high efficiency and applied in healable flexible electronics.


Carbon Trends ◽  
2021 ◽  
pp. 100074
Author(s):  
Lerato L Mokoloko ◽  
Boitumelo J Matsoso ◽  
Roy P. Forbes ◽  
Dean H. Barrett ◽  
Beatriz D. Moreno ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 199-204 ◽  
Author(s):  
W. Jackson ◽  
Marcia Almanza-Workman ◽  
Alison Chaiken ◽  
Robert Garcia ◽  
Albert Jeans ◽  
...  

2015 ◽  
Vol 49 (3) ◽  
pp. 43-49 ◽  
Author(s):  
David P. Fries ◽  
Chase A. Starr ◽  
Geran W. Barton

AbstractMany common ocean sensor systems measure a localized space above a single sensor element. Single-point measurements give magnitude but not necessarily direction information. Expanding single sensor elements, such as used in salinity sensors, into arrays permits spatial distribution measurements and allows flux visualizations. Furthermore, applying microsystem technology to these macro sensor systems can yield imaging arrays with high-resolution spatial/temporal sensing functions. Extending such high spatial resolution imaging over large areas is a desirable feature for new “vision” modes on autonomous robotic systems and for deployable ocean sensor systems. The work described here explores the use of printed circuit board (PCB) technology for new sensing concepts and designs. In order to create rigid-conformal, large area imaging “camera” systems, we have merged flexible PCB substrates with rigid constructions from 3-D printing. This approach merges the 2-D flexible electronics world of printed circuits with the 3-D printed packaging world. Furthermore, employing architectures used by biology as a basis for our imaging systems, we explored naturally and biologically inspired designs, their relationships to visual imagining, and alternate mechanical systems of perception. Through the use of bio-inspiration, a framework is laid out to base further research on design for packaging of ocean sensors and arrays. Using 3-D printed exoskeleton's rigid form with flexible printed circuits, one can create systems that are both rigid and form-fitting with 3-D shape and enable new sensor systems for various ocean sensory applications.


2016 ◽  
Vol 36 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Khalid Nawaz ◽  
Muhammad Ayub ◽  
Noaman Ul-Haq ◽  
M.B. Khan ◽  
Muhammad Bilal Khan Niazi ◽  
...  

Abstract Large area graphene oxide sheets were synthesized, dispersed in water and used as nanofiller for mechanical improvement in terms of Young’s modulus and ultimate tensile strength (UTS) of polyvinyl alcohol (PVA) at low loading. The molecular level dispersion and interfacial interactions between the graphene oxides and polymeric matrix PVA were the real challenges. An excellent improvement in mechanical properties at 0.35 wt% loading was observed. Modulus improved from 1.58 GPa to 2.72 GPa (~71% improvement), UTS improved from 120 MPa to 197 MPa (~65% improvement), and in spite of these improvements, interestingly, there was no fall in elongation at break at this loading.


2018 ◽  
Vol 28 (18) ◽  
pp. 1707247 ◽  
Author(s):  
Xinyu Wang ◽  
Fang Wan ◽  
Linlin Zhang ◽  
Zifang Zhao ◽  
Zhiqiang Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document