In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer

Author(s):  
Maurice A. Leutenegger ◽  
Marc Audard ◽  
Kevin R. Boyce ◽  
Gregory V. Brown ◽  
Meng P. Chiao ◽  
...  
Keyword(s):  
X Ray ◽  
Author(s):  
Ralf K. Heilmann ◽  
Alexander R. Bruccoleri ◽  
Jungki Song ◽  
Mark L. Schattenburg ◽  
Randall K. Smith ◽  
...  
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2017 ◽  
Vol 24 (6) ◽  
pp. 1113-1119 ◽  
Author(s):  
E. Nazaretski ◽  
H. Yan ◽  
K. Lauer ◽  
N. Bouet ◽  
X. Huang ◽  
...  

A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ∼15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature of a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.


1990 ◽  
Vol 185 ◽  
Author(s):  
Alain E. Kaloyeros ◽  
Robert M. Ehrenreich

AbstractPhosphorus is found to be a common impurity in many of the iron tools and weapons produced during the pre-Roman and Roman Iron Ages of Britain (600 BC - 300 AD). The effects of this impurity on the properties and performance of antiquarian materials is not well understood, however. This paper presents the initial findings of an in-depth study of the distribution, chemistry, and effects of phosphorus in Romano-British ironwork. For this purpose, two Romano-British iron artifacts from the site of Ircheoter, Northamptonshire, were examined using powerful techniques for archeological materials analysis that include electron microprobe, secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM) with energydispersive x-ray spectroscopy capabilities (EDXS), and Auger electron spectroscopy (AES). It was found that phosphorous was indeed present in the artifacts. The phosphorus atoms were predominantly segregated at grain boundaries and thus should have led to a lowering of grain boundary cohesion and a degradation in the performance of the tools.


2007 ◽  
Vol 51 (4) ◽  
pp. 1256 ◽  
Author(s):  
Guk Bae Kim ◽  
Sang Joon Lee ◽  
Jin Pyung Lee ◽  
Jong Hyun Kim ◽  
Suk Sang Chang ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1173-C1173
Author(s):  
Kamila Wiaderek ◽  
Olaf Borkiewicz ◽  
Nathalie Pereira ◽  
Jan Ilavsky ◽  
Glenn Amatucci ◽  
...  

Batteries are complex multicomponent devices wherein mesoscale phenomena–the nanoscale structure and chemistry of different components, and interactions thereof–drive functionality and performance. For example, electron/ion transport within the composite electrodes relies on bi-continuous nanostructuring to form electrically and ionicly conductive paths. Electrochemical conversion of different salts of a given metal yields a common and ostensibly identical product: the zero valent metal. For example, maximal lithiation of iron-based electrodes produces metallic iron nanoparticles for oxide, fluoride, and oxyfluoride electrodes alike. Accordingly, these provide an opportunity to explore the coupling of nanostructure development and anion chemistry, and correlate these with electrochemical performance. We combine synchrotron-based small angle X-ray scattering (SAXS) and pair distribution function (PDF) measurements to probe metallic iron formed by electrochemical conversion of different iron compounds across multiple length-scales and decouple the influence of anion chemistry and reaction temperature on the atomic structure and nanoscale morphology.


2018 ◽  
Vol 89 (6) ◽  
pp. 063121 ◽  
Author(s):  
W. Lu ◽  
B. Friedrich ◽  
T. Noll ◽  
K. Zhou ◽  
J. Hallmann ◽  
...  
Keyword(s):  
X Ray ◽  

2010 ◽  
Author(s):  
M. Borland ◽  
R. Garrett ◽  
I. Gentle ◽  
K. Nugent ◽  
S. Wilkins

Sign in / Sign up

Export Citation Format

Share Document