Physics-based data augmentation for high frequency 3D radar systems

Author(s):  
Kenneth D. Morton ◽  
Miles Crosskey ◽  
Patrick Wang ◽  
Rayn Sakaguchi
2017 ◽  
Vol 15 ◽  
pp. 1-9
Author(s):  
Karsten Schubert ◽  
Jens Werner ◽  
Fabian Schwartau

Abstract. During the increasing dissemination of renewable energy sources the potential and actual interference effects of wind turbine plants became obvious. Turbines reflect the signals of weather radar and other radar systems. In addition to the static radar echoes, in particular the Doppler echoes are to be mentioned as an undesirable impairment Keränen (2014). As a result, building permit is refused for numerous new wind turbines, as the potential interference can not be reliably predicted. As a contribution to the improvement of this predictability, measurements are planned which aim at the high-frequency characterisation of wind energy installations. In this paper, a cost-effective FMCW radar is presented, which is operated in the same frequency band (C-band) as the weather radars of the German weather service. Here, the focus is on the description of the hardware design including the considerations used for its dimensioning.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Hugh Roarty ◽  
Lisa Hazard ◽  
Enrique Fanjul

Fourth Meeting of the Global High Frequency Radar Network; Heraklion, Crete, Greece, 22–23 September 2015


2019 ◽  
Vol 11 (3) ◽  
pp. 291 ◽  
Author(s):  
Simone Cosoli ◽  
Stuart de Vos

Direction-finding SeaSonde (4.463 MHz; 5.2625 MHz) and phased-array WEllen RAdar WERA (9.33 MHz; 13.5 MHz) High-frequency radar (HFR) systems are routinely operated in Australia for scientific research, operational modeling, coastal monitoring, fisheries, and other applications. Coverage of WERA and SeaSonde HFRs in Western Australia overlap. Comparisons with subsurface currents show that both HFR types agree well with current meter records. Correlation (R), root-mean-squares differences (RMSDs), and mean bias (bias) for hourly-averaged radial currents range between R = (−0.03, 0.78), RMSD = (9.2, 30.3) cm/s, and bias = (−5.2, 5.2) cm/s for WERAs; and R = (0.1, 0.76), RMSD = (17.4, 33.6) cm/s, bias = (0.03, 0.36) cm/s for SeaSonde HFRs. Pointing errors (θ) are in the range θ = (1°, 21°) for SeaSonde HFRs, and θ = (3°, 8°) for WERA HFRs. For WERA HFR current components, comparison metrics are RU = (−0.12, 0.86), RMSDU = (12.3, 15.7) cm/s, biasU = (−5.1, −0.5) cm/s; and, RV = (0.61, 0.86), RMSDV = (15.4, 21.1) cm/s, and biasV = (−0.5, 9.6) cm/s for the zonal (u) and the meridional (v) components. Magnitude and phase angle for the vector correlation are ρ = (0.58, 0.86), φ = (−10°, 28°). Good match was found in a direct comparison of SeaSonde and WERA HFR currents in their overlap (ρ = (0.19, 0.59), φ = (−4°, +54°)). Comparison metrics at the mooring slightly decrease when SeaSonde HFR radials are combined with WERA HFR: scalar (vector) correlations for RU, V, (ρ) are in the range RU = (−0.20, 0.83), RV = (0.39, 0.79), ρ = (0.47, 0.72). When directly compared over the same grid, however, vectors from WERA HFR radials and vectors from merged SeaSonde–WERA show RU (RV) exceeding 0.9 (0.7) within the HFR grid. Despite the intrinsic differences between the two types of radars used here, findings show that different HFR genres can be successfully merged, thus increasing current mapping capability of the existing HFR networks, and minimising operational downtime, however at a likely cost of slightly decreased data quality.


2005 ◽  
Vol 22 (8) ◽  
pp. 1195-1206 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar

Abstract Monitoring of precipitation using high-frequency radar systems, such as the X band, is becoming increasingly popular because of their lower cost compared to their S-band counterpart. However, at higher frequencies, such as the X band, the precipitation-induced attenuation is significant, and introduces ambiguities in the interpretation of the radar observations. Differential phase measurements have been shown to be very useful for correcting the measured reflectivity for precipitation-induced attenuation. This paper presents a quantitative evaluation of two attenuation correction methodologies with specific emphasis on the X band. A simple differential phase–based algorithm as well as the range-profiling algorithm are studied. The impact of backscatter differential phase on the performance of attenuation correction is evaluated. It is shown that both of the algorithms for attenuation correction work fairly well, yielding attenuation-accurate corrected reflectivities with a negligible bias.


2021 ◽  
Vol 11 (22) ◽  
pp. 10811
Author(s):  
Peipeng Wang ◽  
Xiuguo Zhang ◽  
Zhiying Cao

The task of charge prediction is to predict the charge based on the fact description. Existing methods have a good effect on the prediction of high-frequency charges, but the prediction of low-frequency charges is still a challenge. Moreover, there exist some confusing charges that have relatively similar fact descriptions, which can be easily misjudged. Therefore, we propose a model with data augmentation and feature augmentation for few-shot charge prediction. Specifically, the model takes the text description as the input and uses the Mixup method to generate virtual samples for data augmentation. Then, the charge information heterogeneous graph is introduced, and a novel graph convolutional network is designed to extract distinguishability features for feature augmentation. A feature fusion network is used to effectively integrate the charge graph knowledge into the fact to learn semantic-enhanced fact representation. Finally, the semantic-enhanced fact representation is used to predict the charge. In addition, based on the distribution of each charge, a category prior loss function is designed to increase the contribution of low-frequency charges to the model optimization. The experimental results on real-work datasets prove the effectiveness and robustness of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document