Photoluminescence and deep-level transient spectroscopy of DX-centers in selectively silicon-doped GaAs-AlAs superlattices

1991 ◽  
Author(s):  
Soraya Ababou ◽  
Taha Benyattou ◽  
Jean J. Marchand ◽  
Louis Mayet ◽  
Gerard Guillot ◽  
...  
1992 ◽  
Vol 262 ◽  
Author(s):  
Subhasis Ghosh ◽  
Vikram Kumar

ABSTRACTPhoto-Deep Level Transient Spectroscopy with 1.38 eV light reveals a new level with thermal activation energy 0.2 eV of DX centers in silicon doped Alx Ga1-xAs (x = 0.26) for the first time. The observation of this level directly proves the negative-U properties of DX centers and the existence of thermodynamically metastable state DX.


1989 ◽  
Vol 67 (4) ◽  
pp. 375-378 ◽  
Author(s):  
C. K. Teh ◽  
F. L. Weichman ◽  
C. C. Tin ◽  
P. A. Barnes

Photoluminescence (PL), Fourier-transform infrared (FTIR), and deep-level transient spectroscopy (DLTS) measurements have been made on various samples of silicon-doped liquid-encapsulated Czochralski-grown GaAs. All the samples show prominent PL peaks at 1.443 and 1.325 eV together with their longitudinal optic (LO) phonon peaks. The PL peak at 1.443 eV has been reported in the literature as being due to either GaAs or a boron-related defect. The FTIR results show the presence of BGa at 540.3 and 517.0 cm−1 and SiGa at 383.6 cm−1. We have observed that there is no correlation between the PL peak at 1.443 eV and BGa. Thus, we believe that this PL peak is related to the GaAs antisite defect. The presence of EL2 in the samples has been measured using DLTS. We have found that the intensity of the PL peak at 1.443 eV varies inversely with that of the EL2 peak. This relationship indirectly confirms that the 1.443 eV peak is due to the gallium antisite defect. The PL peak at 1.325 eV is significantly different from those reported in the literature for GaAs:Si. Measurements have also been made on samples of GaAs:Si annealed under different arsenic overpressures.


1993 ◽  
Vol 312 ◽  
Author(s):  
P. Krispin ◽  
R. Hey ◽  
H. Kostial ◽  
M. Höricke

AbstractWe report on a detailed investigation of MBE-grown isotype silicon-doped heterostructures by capacitance/voltage (C/V) technique and deep-level transient spectroscopy (DLTS). A sequence of electrically active defects is found. By depth profiling of the density of the dominant levels it is demonstrated that the corresponding defects are concentrated at the GaAs-on-AlAs (inverted) interface. By comparison with studies on irradiation-induced levels in LPE- or VPE-grown AlGaAs we conclude that the defects at the GaAs/AlAs interface are most probably linked to different charge states of the arsenic vacancy VAs and VAs−ASi pairs.


1988 ◽  
Vol 27 (Part 1, No. 5) ◽  
pp. 738-745 ◽  
Author(s):  
Michihiro Fudamoto ◽  
Kenichiro Tahira ◽  
Jun Morimoto ◽  
Toru Miyakawa

1992 ◽  
Vol 83-87 ◽  
pp. 853-858
Author(s):  
Ming Fu Li ◽  
Peter Y. Yu ◽  
Eicke R. Weber ◽  
E. Bauser ◽  
W.L. Hansen ◽  
...  

1987 ◽  
Vol 104 ◽  
Author(s):  
John W. Farmer ◽  
Harold P. Hjalmarson ◽  
G. A. Samara

ABSTRACTPressure dependent Deep Level Transient Spectroscopy (DLTS) experiments are used to measure the properties of the deep donors (DX-centers) responsible for the persistent photoconductivity effect in Si-doped AlGaAs. The sample dependence of the DLTS spectra shows evidence for a defect complex involved in the DX-center.


1994 ◽  
Vol 108 ◽  
pp. 75-96
Author(s):  
Enrique Calleja ◽  
Ignacio Izpura

Sign in / Sign up

Export Citation Format

Share Document