Formation of Intrinsic Defects at MBE-Grown GaAs/AlAs Interfaces

1993 ◽  
Vol 312 ◽  
Author(s):  
P. Krispin ◽  
R. Hey ◽  
H. Kostial ◽  
M. Höricke

AbstractWe report on a detailed investigation of MBE-grown isotype silicon-doped heterostructures by capacitance/voltage (C/V) technique and deep-level transient spectroscopy (DLTS). A sequence of electrically active defects is found. By depth profiling of the density of the dominant levels it is demonstrated that the corresponding defects are concentrated at the GaAs-on-AlAs (inverted) interface. By comparison with studies on irradiation-induced levels in LPE- or VPE-grown AlGaAs we conclude that the defects at the GaAs/AlAs interface are most probably linked to different charge states of the arsenic vacancy VAs and VAs−ASi pairs.

Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


2011 ◽  
Vol 109 (6) ◽  
pp. 064514 ◽  
Author(s):  
A. F. Basile ◽  
J. Rozen ◽  
J. R. Williams ◽  
L. C. Feldman ◽  
P. M. Mooney

1989 ◽  
Vol 67 (4) ◽  
pp. 375-378 ◽  
Author(s):  
C. K. Teh ◽  
F. L. Weichman ◽  
C. C. Tin ◽  
P. A. Barnes

Photoluminescence (PL), Fourier-transform infrared (FTIR), and deep-level transient spectroscopy (DLTS) measurements have been made on various samples of silicon-doped liquid-encapsulated Czochralski-grown GaAs. All the samples show prominent PL peaks at 1.443 and 1.325 eV together with their longitudinal optic (LO) phonon peaks. The PL peak at 1.443 eV has been reported in the literature as being due to either GaAs or a boron-related defect. The FTIR results show the presence of BGa at 540.3 and 517.0 cm−1 and SiGa at 383.6 cm−1. We have observed that there is no correlation between the PL peak at 1.443 eV and BGa. Thus, we believe that this PL peak is related to the GaAs antisite defect. The presence of EL2 in the samples has been measured using DLTS. We have found that the intensity of the PL peak at 1.443 eV varies inversely with that of the EL2 peak. This relationship indirectly confirms that the 1.443 eV peak is due to the gallium antisite defect. The PL peak at 1.325 eV is significantly different from those reported in the literature for GaAs:Si. Measurements have also been made on samples of GaAs:Si annealed under different arsenic overpressures.


1992 ◽  
Vol 262 ◽  
Author(s):  
Subhasis Ghosh ◽  
Vikram Kumar

ABSTRACTPhoto-Deep Level Transient Spectroscopy with 1.38 eV light reveals a new level with thermal activation energy 0.2 eV of DX centers in silicon doped Alx Ga1-xAs (x = 0.26) for the first time. The observation of this level directly proves the negative-U properties of DX centers and the existence of thermodynamically metastable state DX.


1983 ◽  
Vol 20 (2) ◽  
pp. 145-149
Author(s):  
W. S. Lau ◽  
Y. W. Lam ◽  
C. C. Chang

A unified approach is presented in the derivation of equations for the constant-voltage capacitance transient and constant-capacitance voltage transient in deep-level transient spectroscopy (DLTS), and for the relationship between them. The validity of these equations is independent of the device and nature of deep traps.


Sign in / Sign up

Export Citation Format

Share Document