EL2 and gallium antisite defects in GaAs: Si

1989 ◽  
Vol 67 (4) ◽  
pp. 375-378 ◽  
Author(s):  
C. K. Teh ◽  
F. L. Weichman ◽  
C. C. Tin ◽  
P. A. Barnes

Photoluminescence (PL), Fourier-transform infrared (FTIR), and deep-level transient spectroscopy (DLTS) measurements have been made on various samples of silicon-doped liquid-encapsulated Czochralski-grown GaAs. All the samples show prominent PL peaks at 1.443 and 1.325 eV together with their longitudinal optic (LO) phonon peaks. The PL peak at 1.443 eV has been reported in the literature as being due to either GaAs or a boron-related defect. The FTIR results show the presence of BGa at 540.3 and 517.0 cm−1 and SiGa at 383.6 cm−1. We have observed that there is no correlation between the PL peak at 1.443 eV and BGa. Thus, we believe that this PL peak is related to the GaAs antisite defect. The presence of EL2 in the samples has been measured using DLTS. We have found that the intensity of the PL peak at 1.443 eV varies inversely with that of the EL2 peak. This relationship indirectly confirms that the 1.443 eV peak is due to the gallium antisite defect. The PL peak at 1.325 eV is significantly different from those reported in the literature for GaAs:Si. Measurements have also been made on samples of GaAs:Si annealed under different arsenic overpressures.

2011 ◽  
Vol 295-297 ◽  
pp. 777-780 ◽  
Author(s):  
M. Ajaz Un Nabi ◽  
M. Imran Arshad ◽  
Adnan Ali ◽  
M. Asghar ◽  
M. A Hasan

In this paper we have investigated the substrate-induced deep level defects in bulk GaN layers grown onp-silicon by molecular beam epitaxy. Representative deep level transient spectroscopy (DLTS) performed on Au-GaN/Si/Al devices displayed only one electron trap E1at 0.23 eV below the conduction band. Owing to out-diffusion mechanism; silicon diffuses into GaN layer from Si substrate maintained at 1050°C, E1level is therefore, attributed to the silicon-related defect. This argument is supported by growth of SiC on Si substrate maintained at 1050°C in MBE chamber using fullerene as a single evaporation source.


1992 ◽  
Vol 262 ◽  
Author(s):  
Subhasis Ghosh ◽  
Vikram Kumar

ABSTRACTPhoto-Deep Level Transient Spectroscopy with 1.38 eV light reveals a new level with thermal activation energy 0.2 eV of DX centers in silicon doped Alx Ga1-xAs (x = 0.26) for the first time. The observation of this level directly proves the negative-U properties of DX centers and the existence of thermodynamically metastable state DX.


1993 ◽  
Vol 312 ◽  
Author(s):  
P. Krispin ◽  
R. Hey ◽  
H. Kostial ◽  
M. Höricke

AbstractWe report on a detailed investigation of MBE-grown isotype silicon-doped heterostructures by capacitance/voltage (C/V) technique and deep-level transient spectroscopy (DLTS). A sequence of electrically active defects is found. By depth profiling of the density of the dominant levels it is demonstrated that the corresponding defects are concentrated at the GaAs-on-AlAs (inverted) interface. By comparison with studies on irradiation-induced levels in LPE- or VPE-grown AlGaAs we conclude that the defects at the GaAs/AlAs interface are most probably linked to different charge states of the arsenic vacancy VAs and VAs−ASi pairs.


2004 ◽  
Vol 815 ◽  
Author(s):  
X. D. Chen ◽  
C. C. Ling ◽  
S. Fung ◽  
C. D. Beling ◽  
H. S. Wu ◽  
...  

AbstractDeep level transient spectroscopy (DLTS) was used to study deep level defects in He-implanted n-type 6H-SiC samples. Low dose He-implantation (fluence ∼2×1011 ions/cm2) has been employed to keep the as-implanted sample conductive so that studying the introduction and the thermal evolution of the defects becomes feasible. A strong broad DLTS peak at 275K-375K (called signal B) and another deep level at EC-0.50eV were observed in the as-implanted sample. The intensity of the peak B was observed to linearly proportional to the logarithm of the filling pulse width, which is a signature for electron capture into a defect related to dislocation. After annealing at 500°C, the intensity of peak was significantly reduced and the remained signal has properties identical to the well known Z1/Z2 deep defects, although it is uncertain whether the Z1/Z2 exist in the as-implanted sample or it is the annealing product of the dislocation-related defect. The E1/E2 defect (EC-0.3/0.4eV) was not presence in the as-implanted sample, but was observed after the 300°C annealing.


2009 ◽  
Vol 615-617 ◽  
pp. 389-392 ◽  
Author(s):  
Giovanni Alfieri ◽  
Tsunenobu Kimoto

As-grown and 116 keV electron-irradiated n-type 3C and 4H-SiC epilayers were electrically characterized by means of Fourier-transform deep level transient spectroscopy (FT-DLTS). A total of four deep levels, in the 0.20-0.73 eV range, below the conduction band, have been detected. By considering the band gap offset between 4H and 3C polytypes, we found that the deepest level in 3C-SiC labeled K3 (Ec-0.73 eV) has an energy position close to the EH6/7 level in 4H-SiC. An electron-dose dependence study of K3 and EH6/7, reveals that these two centers display a similar dose dependence behavior, suggesting that they may be related to the same defect.


2011 ◽  
Vol 679-680 ◽  
pp. 265-268 ◽  
Author(s):  
Thanos Tsirimpis ◽  
S. Beljakova ◽  
Bernd Zippelius ◽  
Heiko B. Weber ◽  
Gerhard Pensl ◽  
...  

p-type 3C-SiC samples were implanted by iron (Fe) and investigated by means of deep level transient spectroscopy (DLTS). Corresponding argon (Ar) profiles with similar implantation damage were implanted in order to distinguish between iron-related defects and defects caused by implantation damage. Two donor-like iron-related centers were identified in p-type 3C-SiC.


2011 ◽  
Vol 679-680 ◽  
pp. 253-256 ◽  
Author(s):  
Giovanni Alfieri ◽  
Tsunenobu Kimoto

An isochronal annealing in the 100-1200 oC temperature range was carried out on 116 and 400 keV electron irradiated Al-doped 6H-SiC epitaxial layers. Electrical characterization of the epilayers, performed by Fourier-Transform Deep Level Transient Spectroscopy, revealed the presence of six levels in the band gap, in the 0.1-1.6 eV energy range. Their nature is discussed in the light of previous experimental and theoretical works found in the literature.


Sign in / Sign up

Export Citation Format

Share Document