Observed extreme precipitation-temperature scaling in Russia during 1961-2017

Author(s):  
Maria A. Aleshina ◽  
Vladimir Semenov
2021 ◽  
Author(s):  
Sarosh Alam Ghausi ◽  
Axel Kleidon ◽  
Subimal Ghosh

<p>One direct effect of climate warming on hydrology is the increase in moisture holding capacity of atmosphere at the rate of 7%/°C as suggested by the Clausius Clapeyron equation. Extreme precipitation largely depends on the amount of precipitable water in the atmospheric column and is thus expected to scale with temperature at the same rate. Observations, however, show significant variability in precipitation - temperature scaling rates, with negative scaling dominating in the tropical regions. These scaling relationships assume a one way causality, i.e. temperature is independent of precipitation. However, we show here that temperatures strongly co-vary with precipitation through the effect that clouds have on surface radiation. The presence of clouds associated with precipitation events result in lower solar isolation at the surface, further leading to reduced temperatures. This induces a two-way causality and thus temperature is no longer independent of precipitation. To remove this cooling effect of clouds, we used a surface energy balance model with a thermodynamic constraint to derive clear sky temperatures during precipitation events. We then show using observations from India, that extreme precipitation scaled with clear sky temperatures shows an increase consistent with the CC rate. On contrary, the negative scaling obtained using observed temperatures misrepresent the precipitation response to warming as a result of the co-variation with the cloud radiative effect. Our findings reveal that scaling relationships not only show how precipitation changes with temperature but also how atmospheric conditions associated with precipitation affect temperature. Thus, this covariation needs to be taken into account when using observations to derive scaling relationships that are then used to infer the extreme precipitation response to climate change.</p>


2021 ◽  
pp. 1-42
Author(s):  
Johan B. Visser ◽  
Conrad Wasko ◽  
Ashish Sharma ◽  
Rory Nathan

AbstractObservational studies of extreme daily and subdaily precipitation-temperature sensitivities (apparent scaling) aim to provide evidence and improved understanding of how extreme precipitation will respond to a warming climate. However, interpretation of apparent scaling results is hindered by large variations in derived scaling rates and divergence from theoretical and modelled projections of systematic increases in extreme precipitation intensities (climate scaling). In warmer climatic regions, rainfall intensity has been reported to increase with temperature to a maximum before decreasing, creating a second order discontinuity or “hook” like structure. Here we investigate spatial and temporal discrepancies in apparent scaling results by isolating rainfall events and conditioning event precipitation on duration. We find that previously reported negative apparent scaling at higher temperatures which creates the hook structure, is the result of a decrease in the duration of the precipitation event, and not to the decrease in precipitation rate. We introduce standardized pooling using long records of Australian station data across climate zones, to show average precipitation intensities and 1-h peak precipitation intensities increase with temperature across all event durations and locations investigated. For shorter duration events (< 6-h), average precipitation intensity scaling is in line with the expected Clausius- Clapeyron (CC) relation at ~7 %/°C, and this decreases with increasing duration, down to 2 %/°C at 24-h duration. Consistent with climate scaling derived from model projections, 1-h peak precipitation intensities are found to increase with temperature at elevated rates compared to average precipitation intensities, with super-CC scaling (10 – 14 %/°C) found for short-duration events in tropical climates.


2020 ◽  
Vol 47 (18) ◽  
Author(s):  
J. B. Visser ◽  
C. Wasko ◽  
A. Sharma ◽  
R. Nathan

2021 ◽  
Author(s):  
Maria Aleshina ◽  
Vladimir Semenov ◽  
Alexander Chernokulsky

&lt;p&gt;Precipitation extremes are widely thought to intensify with the global warming due to exponential growth, following the Clausius-Clapeyron (C-C) equation of atmosphere water holding capacity with rising temperatures. However, a number of recent studies based on station and reanalysis data for the contemporary period showed that scaling rates between extreme precipitation and temperature are strongly dependent on temperature range, region and moisture availability. Here, we examine the scaling between daily precipitation extremes and surface air temperature over Russian territory for the last four decades using meteorological stations data and ERA-Interim reanalysis. The precipitation-temperature relation is examined for total precipitation amount and, separately, for convective and large-scale precipitation types. In winter, a general increase of extreme precipitation of all types according to C-C relation is revealed. For the Russian Far East region, the stratiform precipitation extremes scale with surface air temperature following even super C-C rates, about two times as fast as C-C. However, in summer we find a peak-like structure of the precipitation-temperature scaling, especially for the convective precipitation in the southern regions of the country. Being consistent with the C-C relationship, extreme precipitation peaks at the temperature range between 15 &amp;#176;C and 20 &amp;#176;C. For the higher temperatures, the negative scaling prevails. Furthermore, it was shown that relative humidity in general decreases with growing temperature in summer. Notably, there appears to be a temperature threshold in the 15-20 &amp;#176;C range, beyond that relative humidity begins to decline more rapidly. This indicates that moisture availability can be the major factor for the peak-shaped relationship between extreme precipitation and temperature revealed by our analysis.&lt;/p&gt;


2021 ◽  
Author(s):  
Tanja Winterrath ◽  
Ewelina Walawender ◽  
Katharina Lengfeld ◽  
Elmar Weigl ◽  
Andreas Becker

&lt;p&gt;According to the Clausius-Clapeyron equation on saturation vapour pressure a temperature increase of 1&amp;#160;K allows an atmospheric air mass to hold approximately 7&amp;#160;% more water vapour thus increasing its potential for heavy precipitation. Several published measurement studies on the relation between precipitation intensity and temperature, however, revealed an increase of even up to twofold the CC rate for short-term precipitation events. Model conceptions explain this scaling behaviour with increasing temperature by different intensification pathways of convective processes and/or a transition between stratiform and convective precipitation regimes that both can hardly be verified by point measurements alone. In this presentation, we present first results of the correlation between ambient air temperature and different attributes of the Catalogue of Radar-based Heavy Rainfall Events (CatRaRE) recently published by Deutscher Wetterdienst (DWD). This object-oriented event catalogue files and characterizes extreme precipitation events that have occurred on German territory since 2001. It is based on the high-resolution precipitation climate data set RADKLIM of DWD, i.e. contiguous radar-based reflectivity measurements adjusted to hourly station-based precipitation totals and corrected for typical measurement errors applying specific climatological correction methods. Our analysis gives new insights into potential explanations of the observed temperature scaling relating not only precipitation intensity but characteristic event properties like area, duration, and extremity indices with ambient temperature data. With this approach, extreme precipitation events can be analysed in a comprehensive way that is significant in the context of potential impact. The presented analysis moreover allows testing the hypothesis of regime changing based on objective precipitation event criteria that are typical for different precipitation types. We will briefly present the methodological background of CatRaRE with special focus on the event attributes used in the analysis of Clausius-Clapeyron scaling and give first results on the retrieved temperature dependencies of extreme precipitation events.&lt;/p&gt;


2020 ◽  
Author(s):  
Christopher Purr ◽  
Erwan Brisson ◽  
Bodo Ahrens

&lt;p&gt;Convection permitting climate models (CPMs) agree on an increase in short-term, extreme precipitation in the future. However, different studies using CPM simulations found regionally varying temperature scaling rates of hourly extreme precipitation either close to or above the Clausius-Clapeyron-rate (CC-rate) of 7%/K. These variations suggest that the dynamics of convective events strongly regulate the local scaling rates. In order to understand how the characteristics of convective events change in the future, we apply a tracking algorithm to precipitation data with 5-min temporal resolution from a regional climate model (COSMO-CLM) simulation. The model is run over central Europe at a grid size of 0.025&amp;#176; for an evaluation period (1981-2015) driven by ERA-Interim reanalysis data, as well as a present-day (1976-2005) and a future (2071-2100) period driven by the EC-Earth global model. We investigate the temperature scaling of convective cell characteristics like total precipitation per cell, mean area, lifetime and maximum intensity, as well as changes in the diurnal cycle of convective cells which might explain the overall scaling rates. The cell characteristics precipitation sum, mean area and maximum intensity show an exponential increase with temperature across most of the temperature range with a drop-off at high temperatures very similar to fixed location scaling curves. While the maximum intensity and area scale at rates close to the CC-rate, the precipitation sum scales at a rate close to twice the CC-rate. In contrast to this, the lifetime of convective cells does not increase with temperature but stays constant with a drop-off at high temperatures. The future simulation shows a shift of the scaling curves towards higher peak values at higher temperatures. Convective activity is projected to decrease during daytime and increase during nighttime. While the mean intensity of convective cells increases throughout the whole day, the number of cells is reduced during the afternoon peak and increased during nighttime. This leads to a slight reduction of convective precipitation during daytime and almost a doubling of convective precipitation during nighttime.&lt;/p&gt;


Author(s):  
Conrad Wasko

As climate change alters flood risk, there is a need to project changes in flooding for water resource management, infrastructure design and planning. The use of observed temperature relationships for informing changes in hydrologic extremes takes many forms, from simple proportional change approaches to conditioning stochastic rainfall generation on observed temperatures. Although generally focused on understanding changes to precipitation, there is an implied transfer of information gained from precipitation-temperature sensitivities to flooding as extreme precipitation is often responsible for flooding. While reviews of precipitation-temperature sensitivities and the non-stationarity of flooding exist, little attention has been given to the intersection of these two topics. Models which use temperature as a covariate to assess the non-stationarity of extreme precipitation outperform both stationary models and those using a temporal trend as a covariate. But care must be taken when projecting changes in flooding on the basis on precipitation-temperature sensitivities, as antecedent conditions modify the runoff response. Although good agreement is found between peak flow-temperature sensitivities and historical trends across Australia, there remains little evaluation of flood projections using temperature sensitivities globally. Significant work needs to be done before the use of temperature as a covariate for flood projection can be adopted with confidence. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


Sign in / Sign up

Export Citation Format

Share Document