Three-dimensional prostate CT segmentation through fine-tuning of a pre-trained neural network using no reference labeling

Author(s):  
Kayla Caughlin ◽  
Maysam Shahedi ◽  
Jonathan E. Shoag ◽  
Christopher E. Barbieri ◽  
Daniel J. Margolis ◽  
...  
Author(s):  
Shaolei Wang ◽  
Zhongyuan Wang ◽  
Wanxiang Che ◽  
Sendong Zhao ◽  
Ting Liu

Spoken language is fundamentally different from the written language in that it contains frequent disfluencies or parts of an utterance that are corrected by the speaker. Disfluency detection (removing these disfluencies) is desirable to clean the input for use in downstream NLP tasks. Most existing approaches to disfluency detection heavily rely on human-annotated data, which is scarce and expensive to obtain in practice. To tackle the training data bottleneck, in this work, we investigate methods for combining self-supervised learning and active learning for disfluency detection. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled data and propose two self-supervised pre-training tasks: (i) a tagging task to detect the added noisy words and (ii) sentence classification to distinguish original sentences from grammatically incorrect sentences. We then combine these two tasks to jointly pre-train a neural network. The pre-trained neural network is then fine-tuned using human-annotated disfluency detection training data. The self-supervised learning method can capture task-special knowledge for disfluency detection and achieve better performance when fine-tuning on a small annotated dataset compared to other supervised methods. However, limited in that the pseudo training data are generated based on simple heuristics and cannot fully cover all the disfluency patterns, there is still a performance gap compared to the supervised models trained on the full training dataset. We further explore how to bridge the performance gap by integrating active learning during the fine-tuning process. Active learning strives to reduce annotation costs by choosing the most critical examples to label and can address the weakness of self-supervised learning with a small annotated dataset. We show that by combining self-supervised learning with active learning, our model is able to match state-of-the-art performance with just about 10% of the original training data on both the commonly used English Switchboard test set and a set of in-house annotated Chinese data.


2001 ◽  
Vol 123 (2) ◽  
pp. 465-471 ◽  
Author(s):  
G. Ferretti ◽  
L. Piroddi

In this paper a neural network-based strategy is proposed for the estimation of the NOx emissions in thermal power plants, fed with both oil and methane fuel. A detailed analysis based on a three-dimensional simulator of the combustion chamber has pointed out the local nature of the NOx generation process, which takes place mainly in the burners’ zones. This fact has been suitably exploited in developing a compound estimation procedure, which makes use of the trained neural network together with a classical one-dimensional model of the chamber. Two different learning procedures have been investigated, both based on the external inputs to the burners and a suitable mean cell temperature, while using local and global NOx flow rates as learning signals, respectively. The approach has been assessed with respect to both simulated and experimental data.


2020 ◽  
Vol 12 (21) ◽  
pp. 3657
Author(s):  
Chubo Deng ◽  
Yi Cen ◽  
Lifu Zhang

Hyperspectral images (HSIs), which obtain abundant spectral information for narrow spectral bands (no wider than 10 nm), have greatly improved our ability to qualitatively and quantitatively sense the Earth. Since HSIs are collected by high-resolution instruments over a very large number of wavelengths, the data generated by such sensors is enormous, and the amount of data continues to grow, HSI compression technique will play more crucial role in this trend. The classical method for HSI compression is through compression and reconstruction methods such as three-dimensional wavelet-based techniques or the principle component analysis (PCA) transform. In this paper, we provide an alternative approach for HSI compression via a generative neural network (GNN), which learns the probability distribution of the real data from a random latent code. This is achieved by defining a family of densities and finding the one minimizing the distance between this family and the real data distribution. Then, the well-trained neural network is a representation of the HSI, and the compression ratio is determined by the complexity of the GNN. Moreover, the latent code can be encrypted by embedding a digit with a random distribution, which makes the code confidential. Experimental examples are presented to demonstrate the potential of the GNN to solve image compression problems in the field of HSI. Compared with other algorithms, it has better performance at high compression ratio, and there is still much room left for improvements along with the fast development of deep-learning techniques.


2020 ◽  
pp. 1-12
Author(s):  
Wu Xin ◽  
Qiu Daping

The inheritance and innovation of ancient architecture decoration art is an important way for the development of the construction industry. The data process of traditional ancient architecture decoration art is relatively backward, which leads to the obvious distortion of the digitalization of ancient architecture decoration art. In order to improve the digital effect of ancient architecture decoration art, based on neural network, this paper combines the image features to construct a neural network-based ancient architecture decoration art data system model, and graphically expresses the static construction mode and dynamic construction process of the architecture group. Based on this, three-dimensional model reconstruction and scene simulation experiments of architecture groups are realized. In order to verify the performance effect of the system proposed in this paper, it is verified through simulation and performance testing, and data visualization is performed through statistical methods. The result of the study shows that the digitalization effect of the ancient architecture decoration art proposed in this paper is good.


2021 ◽  
Author(s):  
Satoshi Suzuki ◽  
Shoichiro Takeda ◽  
Ryuichi Tanida ◽  
Hideaki Kimata ◽  
Hayaru Shouno

2021 ◽  
Vol 438 ◽  
pp. 72-83
Author(s):  
Nonato Rodrigues de Sales Carvalho ◽  
Maria da Conceição Leal Carvalho Rodrigues ◽  
Antonio Oseas de Carvalho Filho ◽  
Mano Joseph Mathew

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2939
Author(s):  
Yong Hong ◽  
Jin Liu ◽  
Zahid Jahangir ◽  
Sheng He ◽  
Qing Zhang

This paper provides an efficient way of addressing the problem of detecting or estimating the 6-Dimensional (6D) pose of objects from an RGB image. A quaternion is used to define an object′s three-dimensional pose, but the pose represented by q and the pose represented by -q are equivalent, and the L2 loss between them is very large. Therefore, we define a new quaternion pose loss function to solve this problem. Based on this, we designed a new convolutional neural network named Q-Net to estimate an object’s pose. Considering that the quaternion′s output is a unit vector, a normalization layer is added in Q-Net to hold the output of pose on a four-dimensional unit sphere. We propose a new algorithm, called the Bounding Box Equation, to obtain 3D translation quickly and effectively from 2D bounding boxes. The algorithm uses an entirely new way of assessing the 3D rotation (R) and 3D translation rotation (t) in only one RGB image. This method can upgrade any traditional 2D-box prediction algorithm to a 3D prediction model. We evaluated our model using the LineMod dataset, and experiments have shown that our methodology is more acceptable and efficient in terms of L2 loss and computational time.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Sign in / Sign up

Export Citation Format

Share Document