Study of the complexation reaction between substituted [2,2'-bipyridine]-6,6'-diyl(phosphonates) and terbium ions

2021 ◽  
Author(s):  
Tsagana B. Sumyanova ◽  
Nataliya E. Borisova ◽  
Anna A. Kirsanova
Author(s):  
Sabyasachi Pramanik ◽  
Mihir Manna ◽  
Biswajit Hudait ◽  
Shilaj Roy ◽  
Satyapriya Bhandari

Herein we report a complexation reaction between Zn2+ ions, being present on the surface of an orange-red emitting environmentally sustainable Mn2+-doped ZnS QD, and non-emitting copper quinolate complex (CuQ2 complex),...


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110236
Author(s):  
Gang Li ◽  
Jinli Zhang ◽  
Jia Liu ◽  
Tao Luo ◽  
Yu Xi

Pb(II) leakage from batteries, dyes, construction materials, and gasoline threaten human health and environmental safety, and suitable adsorption materials are vitally important for Pb(II) removal. Bone char is an outstanding adsorbent material for water treatment, and the effectiveness in Pb(II) removing need to be verified. In this paper, the transport characteristics of Pb(II) in columns filled with a sand and bone char mixture were studied at the laboratory scale, and the influences of the initial concentration, column height, inlet flow rate, and competing ion Cu(II) on Pb(II) adsorption and transport were analyzed. The Thomas and Dose-Response models were used to predict the test results, and the mechanisms of Pb(II) adsorption on bone char were investigated. The results showed that the adsorption capacity of the bone char increased with increasing column height and decreased with increasing initial Pb(II) concentration, flow rate, and Cu(II) concentration. The maximum adsorption capacity reached 38.466 mg/g and the saturation rate was 95.8% at an initial Pb(II) concentration of 200 mg/L, inlet flow rate of 4 mL/min, and column height of 30 cm. In the competitive binary system, the higher the Cu(II) concentration was, the greater the decreases in the breakthrough and termination times, and the faster the decrease in the Pb(II) adsorption capacity of the bone char. The predicted results of the Dose-Response model agreed well with the experimental results and were significantly better than those of the Thomas model. The main mechanisms of Pb(II) adsorption on bone char include a surface complexation reaction and the decomposition-replacement-precipitation of calcium hydroxyapatite (CaHA). Based on selectivity, sensitivity, and cost analyses, it can be concluded that bone char is a potential adsorbent for Pb(II)-containing wastewater treatment.


2012 ◽  
Vol 18 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Sameer Abdulrahman ◽  
Kanakapura Basavaiah

Two simple, sensitive and extraction-free spectrophotometric methods are described for the determination of dothiepin hydrochloride (DOTH) both in pure form and in pharmaceutical tablets. The methods are based on ion-pair complex formation between dothiepin base (DOT) and two acidic dyes, namely, bromophenol blue (BPB) or bromocresol green (BCG) with absorption maximum at 425 nm for BPB method or 430 nm for BCG method. Beer?s law is obeyed over the concentration ranges of 1.0-15.0 and 1.0-17.5 ?g mL-1 DOT for BPB and BCG methods, respectively. The molar absorptivity values and Sandell?s sensitivity values are reported for both methods. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.18 and 0.53 ?g mL-1 for BPB method, and 0.17 and 0.50 ?g mL-1 for BCG method, respectively. The stoichiometry of the complex in either case was found to be 1: 1 and the conditional stability constant (KF) of the complexes has also been calculated. The proposed methods were applied successfully to the determination of DOTH in pure form and in its tablet form with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at 95% confidence level and there was no significant difference between the official and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique.


2020 ◽  
Vol 18 (1) ◽  
pp. 453-462
Author(s):  
Jerry O. Adeyemi ◽  
Damian C. Onwudiwe ◽  
Nirasha Nundkumar ◽  
Moganavelli Singh

AbstractAmmonium benzyldithiocarbamate, represented as NH4L, was prepared and used in the complexation reaction involving three organotin(iv) salts, represented as R2SnCl2 (R = CH3, C4H9, and C6H5). The structures of the synthesized complexes [(CH3)2SnL2] (1), [(C4H9)2SnL2] (2), and [(C6H5)2SnL2] (3) were established using various spectroscopic techniques (Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and 119Sn NMR) and elemental analysis. Thermal decomposition of the complexes using thermogravimetric analysis under nitrogen showed no definite pathway in the pattern of the complexes even though they are structurally related. X-ray diffraction studies of the final residue showed a common diffraction pattern for the complexes and confirmed SnS as the product of the thermal treatment. Cytotoxicity studies of these complexes against the human tumor cell lines (HeLa and MCF-7) compared favorably with the used standard 5-fluorouracil drug, with complexes 2 and 3 showing very good activity toward the used cell lines.


2019 ◽  
Vol 145 ◽  
pp. 672-675 ◽  
Author(s):  
Mohamed A. Abdel-Lateef ◽  
Mahmoud A. Omar ◽  
Ramadan Ali ◽  
Sayed M. Derayea

Sign in / Sign up

Export Citation Format

Share Document