Visual analysis of the digital spectrum signal extraction and image processing of different versions of Chopin's exercises (op.10 no.5)

2021 ◽  
Author(s):  
Yiting Zhao
Author(s):  
STEVEN L. TANIMOTO ◽  
RUSS MILLER

The two-dimensional mesh computer architecture has proven to be an appropriate means to apply parallel computation to problems in image processing. However, this is most often done using local-neighbourhood operations to accomplish image filtering and morphological transformations. The discovery of structures in an image such as repetitions and symmetries is another form of visual analysis, and yet relatively little has been done to apply mesh computers to this problem. In this paper, we apply the primitive operations of prefix scanning and sorting to efficiently implement a repetition finding algorithm for arrays. The computational complexity of the algorithm on a n×n mesh is O(n log k) where k is the width of the largest repeated block in the array. The algorithm was implemented on a MasPar MP-1 computer. We describe variations of the algorithm for solving several related problems including the detection of partial symmetries in an image and repetitions in images modulo pixel-value transformations.


2015 ◽  
Vol 1 (8) ◽  
pp. 340
Author(s):  
Bhubneshwar Sharma ◽  
Jyoti Dadwal

This paper describes the basic technological aspects of Digital Image Processing with special reference to satellite image processing. Basically, all satellite image-processing operations can be grouped into three categories: Image Rectification and Restoration, Enhancement and Information Extraction. The former deals with initial processing of raw image data to correct for geometric distortion, to calibrate the data radio metrically and to eliminate noise present in the data. The enhancement procedures are applied to image data in order to effectively display the data for subsequent visual interpretation. It involves techniques for increasing the visual distinction between features in a scene. The objective of the information extraction operations is to replace visual analysis of the image data with quantitative techniques for automating the identification of features in a scene. This involves the analysis of multispectral image data and the application of statistically based decision rules for determining the land cover identity of each pixel in an image. The intent of classification process is to categorize all pixels in a digital image into one of several land cover classes or themes. This classified data may be used to produce thematic maps of the land cover present in an image.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Karen Panetta ◽  
Chen Gao ◽  
Sos Agaian ◽  
Shahan Nercessian

Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM) is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3564
Author(s):  
Thi Thi Zin ◽  
Moe Zet Pwint ◽  
Pann Thinzar Seint ◽  
Shin Thant ◽  
Shuhei Misawa ◽  
...  

Nowadays, for numerous reasons, smart farming systems focus on the use of image processing technologies and 5G communications. In this paper, we propose a tracking system for individual cows using an ear tag visual analysis. By using ear tags, the farmers can track specific data for individual cows such as body condition score, genetic abnormalities, etc. Specifically, a four-digit identification number is used, so that a farm can accommodate up to 9999 cows. In our proposed system, we develop an individual cow tracker to provide effective management with real-time upgrading enforcement. For this purpose, head detection is first carried out to determine the cow’s position in its related camera view. The head detection process incorporates an object detector called You Only Look Once (YOLO) and is then followed by ear tag detection. The steps involved in ear tag recognition are (1) finding the four-digit area, (2) digit segmentation using an image processing technique, and (3) ear tag recognition using a convolutional neural network (CNN) classifier. Finally, a location searching system for an individual cow is established by entering the ID numbers through the application’s user interface. The proposed searching system was confirmed by performing real-time experiments at a feeding station on a farm at Hokkaido prefecture, Japan. In combination with our decision-making process, the proposed system achieved an accuracy of 100% for head detection, and 92.5% for ear tag digit recognition. The results of using our system are very promising in terms of effectiveness.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
M.A. O'Keefe ◽  
W.O. Saxton

A recent paper by Kirkland on nonlinear electron image processing, referring to a relatively new textbook, highlights the persistence in the literature of calculations based on incomplete and/or incorrect models of electron imageing, notwithstanding the various papers which have recently pointed out the correct forms of the appropriate equations. Since at least part of the problem can be traced to underlying assumptions about the illumination coherence conditions, we attempt to clarify both the assumptions and the corresponding equations in this paper, illustrating the effects of an incorrect theory by means of images calculated in different ways.The first point to be made clear concerning the illumination coherence conditions is that (except for very thin specimens) it is insufficient simply to know the source profiles present, i.e. the ranges of different directions and energies (focus levels) present in the source; we must also know in general whether the various illumination components are coherent or incoherent with respect to one another.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Sign in / Sign up

Export Citation Format

Share Document