Interferometric system with resolution better than coherence length for determination of geometrical thickness and refractive index of a layer object

Author(s):  
Dmitry V. Lyakin ◽  
Mickail I. Lobachev ◽  
Vladimir P. Ryabukho ◽  
Valery V. Tuchin
1952 ◽  
Vol 25 (3) ◽  
pp. 680-688
Author(s):  
Rachel J. Fanning ◽  
Norman Bekkedahl

Abstract Rubbers from different sources vary considerably in rubber hydrocarbon content, from 70 per cent or less for some of the wild varieties to about 95 per cent for a good grade of plantation rubber. The quality of a rubber is measured to a great extent by the percentage of rubber hydrocarbon. A new procedure for the quantitative determination of this hydrocarbon has been developed, which involves the measurement of refractive index of a solution of a known weight of acetone-extracted rubber in a known weight of 1-bromonaphthalene. From the observed data and from other previously determined or known physical constants, such as the densities and refractive indexes of the rubber hydrocarbon and the solvent, the percentage of hydrocarbon in the original sample can be calculated. This new method gives results as good as, or better than, other existing methods, and is simpler and less time-consuming to perform.


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


1989 ◽  
Vol 54 (7) ◽  
pp. 1785-1794 ◽  
Author(s):  
Vlastimil Kubáň ◽  
Josef Komárek ◽  
Zbyněk Zdráhal

A FIA-FAAS apparatus containing a six-channel sorption equipment with five 3 x 26 mm microcolumns packed with Spheron Oxin 1 000, Ostsorb Oxin and Ostsorb DTTA was set up. Combined with sorption from 0.002M acetate buffer at pH 4.2 and desorption with 2M-HCl, copper can be determined at concentrations up to 100, 150 and 200 μg l-1, respectively. For sample and eluent flow rates of 5.0 and 4.0 ml min-1, respectively, and a sample injection time of 5 min, the limit of copper determination is LQ = 0.3 μg l-1, repeatability sr is better than 2% and recovery is R = 100 ± 2%. The enrichment factor is on the order of 102 and is a linear function of time (volume) of sample injection up to 5 min and of the sample injection flow rate up to 11 ml min-1 for Spheron Oxin 1 000 and Ostsorb DTTA. For times of sorption of 60 and 300 s, the sampling frequency is 70 and 35 samples/h, respectively. The parameters of the FIA-FAAS determination (acetylene-air flame) are comparable to or better than those achieved by ETA AAS. The method was applied to the determination of traces of copper in high-purity water.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M. Chiesa ◽  
F. Maltoni ◽  
L. Mantani ◽  
B. Mele ◽  
F. Piccinini ◽  
...  

Abstract Measuring the shape of the Higgs boson potential is of paramount importance, and will be a challenging task at current as well as future colliders. While the expectations for the measurement of the trilinear Higgs self-coupling are rather promising, an accurate measurement of the quartic self-coupling interaction is presently considered extremely challenging even at a future 100 TeV proton-proton collider. In this work we explore the sensitivity that a muon collider with a center of mass energy in the multi-TeV range and luminosities of the order of 1035cm−2s−1, as presently under discussion, might provide, thanks to a rather large three Higgs-boson production and to a limited background. By performing a first and simple analysis, we find a clear indication that a muon collider could provide a determination of the quartic Higgs self-coupling that is significantly better than what is currently considered attainable at other future colliders.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pavel Malakhovsky ◽  
Dmitry Murausky ◽  
Dmitry Guzatov ◽  
Sergey Gaponenko ◽  
Mikhail Artemyev

Abstract We examined systematically how self-assembled monolayers (SAMs) of different mercaptoacids affect the spectral shift of the localized surface plasmon resonance in silver nanoplates and nanospheres. We observed a clear trend in the magnitude of a redshift with a molecular length or the SAM thickness within a homologous series of aliphatic mercaptoacids: the thicker shell the stronger the red shift. Using classic Mie theory for plasmonic core-dielectric shell spheres and oblate spheroids we developed the method for determination of a pseudo-refractive index in SAM of different molecules and obtained a good correlation with the reference refractive indices for bulk long-chain aliphatic acids, but only in case of silver nanoplates. Calculations for silver core–shell nanospheres gave overestimated values of refractive index perhaps due to restrictions of Mie theory on the minimum particle size.


2019 ◽  
Vol 219 ◽  
pp. 08003
Author(s):  
Maja Verstraeten

The SoLid Collaboration is currently operating a 1.6 ton neutrino detector near the Belgian BR2 reactor. Its main goal is the observation of the oscillation of electron antineutrinos to previously undetected flavour states. The highly segmented SoLid detector employs a compound scintillation technology based on PVT scintillator in combination with LiF-ZnS(Ag) screens containing the 6Li isotope. The experiment has demonstrated a channel-to-channel response that can be controlled to the level of a few percent, an energy resolution of better than 14% at 1 MeV, and a determination of the interaction vertex with a precision of 5 cm. This contribution highlights the major outcomes of the R&D program, the quality control during component manufacture and integration, the current performance and stability of the full-scale system, as well as the in-situ calibration of the detector with various radioactive sources.


Sign in / Sign up

Export Citation Format

Share Document