Optical testing of surface properties of polymer film: A. Testing the surface energy

Author(s):  
V. A. Sokolov ◽  
V. I. Kravchenko ◽  
A. A. Galkin
Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 547
Author(s):  
DaEun Yang ◽  
Kyutae Seo ◽  
Hyo Kang

We synthesized a series of renewable and plant-based isoeugenol-substituted polystyrenes (PIEU#, # = 100, 80, 60, 40, and 20, where # is the molar percent content of isoeugenol moiety), using polymer modification reactions to study their liquid crystal (LC) alignment behavior. In general, the LC cells fabricated using polymer film with a higher molar content of isoeugenol side groups showed vertical LC alignment behavior. This alignment behavior was well related to the surface energy value of the polymer layer. For example, vertical alignments were observed when the polar surface energy value of the polymer was smaller than approximately 3.59 mJ/m2, generated by the nonpolar isoeugenol moiety with long and bulky carbon groups. Good alignment stability at 100 °C and under ultraviolet (UV) irradiation of 15 J/cm2 was observed for the LC cells fabricated using PIEU100 as a LC alignment layer. Therefore, renewable isoeugenol-based materials can be used to produce an eco-friendly vertical LC alignment system.


2003 ◽  
Vol 782 ◽  
Author(s):  
Jin-Hyung Lee ◽  
Hyun-Woo Lim ◽  
Jin-Goo Park ◽  
Eun-Kyu Lee ◽  
Yangsun Kim

ABSTRACTHot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymer substrates. The optimization of embossing process should be accomplished based on polymer surface properties. Therefore, in this paper, polymers with different surface characteristic were selected and the surface properties of each polymers such as surface energy and adhesion force were investigated by contact angle and AFM. Based on these results, the imprinted nano patterns were compared. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2, 2H –perfluorooctyl)-trichlorosilane to reduce the stiction between molds and polymer substrates. For embossing, pressure of 500 psi, embossing time of 5 min and temperature of above transition temperature were applied. Mr-I 8010 polymer (Micro Resist Technology), Polymethylmethacrylate (PMMA 495k) and LOR (polyaliphatic imide copolymer) were used as substrate for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness of 150 nm. The nano size patterns obtained by hot embossing were identified by atomic force microscopy without breaking the pattern and compared based on the polymer surface properties. The mr-I 8010 which has the lowest surface energy and adhesion force shows the best demolding property.


2018 ◽  
Vol 51 (6) ◽  
pp. 1715-1720 ◽  
Author(s):  
Liqiu Guo ◽  
Hao Lu ◽  
D. Y. Li ◽  
Q. X. Huang ◽  
Xu Wang ◽  
...  

The crystallographic anisotropy of the electric current or conductance, adhesive force, elastic modulus, and deformation magnitude of alpha brass were investigated through property mapping using an atomic force microscope. Surface electron work functions of differently oriented grains in the brass were also analyzed using atomic force microscopy. The mapped surface properties are closely related to the electron work function; the work function reflects the surface activity, which is itself dependent on the surface energy. The anisotropy of the properties is closely correlated to the in situ measured surface electron work function. It is demonstrated that crystallographic planes with higher electron work functions exhibit lower current, smaller adhesive forces, larger elastic moduli and smaller deformation magnitudes. Efforts are made to understand the relationships by connecting the properties with surface energy and electron work function. The dependence of the properties on crystallographic orientation can be elucidated by considering the surface electron behavior using electron work function as a novel probing parameter.


2016 ◽  
Vol 4 (38) ◽  
pp. 14729-14738 ◽  
Author(s):  
S. Oyola-Reynoso ◽  
I. D. Tevis ◽  
J. Chen ◽  
B. S. Chang ◽  
S. Çinar ◽  
...  

Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications.


2012 ◽  
Vol 727-728 ◽  
pp. 1616-1621 ◽  
Author(s):  
Boeira Braga Matheus ◽  
Cristina dos Santos Rocha Sandra

In this research, glass beads with size range between 1.68 and 2mm were coated with 5 polymeric suspensions. The suspensions formulations differ in relation to their employment and physical properties (solids concentration, surface tension and rheology), generating different characteristics of wettability and adhesion with the nucleus. The aim of this study was to evaluate particle coating in a spouted bed through analysis of particle growth in terms of solid surface energy, wettability, and adhesion before and after the formation of the first layer of polymeric film on the particle. The solid-suspension and film-suspension systems were characterized by contact angle and surface energy. The operating conditions were fixed for all suspensions: 1.5 kg of beads, air velocity of 0.369 m/s, air temperature of 60 °C, suspension flow rate of 4 ml and atomizing pressure of 10 psig. Analyzing particle growth kinetics, different behaviors were observed and related not only to glass-suspension wettability, but also to polymeric film-suspension surface properties.


Sign in / Sign up

Export Citation Format

Share Document