A low-frequency vibration-to-electrical energy harvester

Author(s):  
Min Zhang ◽  
Daniel Brignac ◽  
Pratul Ajmera ◽  
Kun Lian
2014 ◽  
Vol 918 ◽  
pp. 106-114 ◽  
Author(s):  
Min Chie Chiu ◽  
Ying Chun Chang ◽  
Long Jyi Yeh ◽  
Chiu Hung Chung ◽  
Chen Hsin Chu

The goal of this paper is to develop and experimentally test portable vibration-based electromagnetic energy harvesters which are fit for extracting low frequency kinetic energy. Based on a previous study on fixed vibration-based electromagnetic energy harvesters, three kinds of portable energy harvesters (prototype I, prototype II, and prototype III) are developed and tested. To obtain the related parameters of the energy harvesters, an experimental platform used to measure the vibrational systems electrical power at the resonant frequency and other fixed frequencies is also established. Based on the research work of vibration theory, a low frequency vibration-arm mechanism (prototype III) which is easily in resonance with a walking tempo is developed. Here, a strong magnet fixed to one side of the vibration-arm along with a set of wires placed along the vibrating path will generate electricity. The circular device has a radius of 180 mm, a width of 50 mm, and weighs 200 grams. Because of its light mass, it is easy to carry and put into a backpack. Experimental results reveal that the energy harvester (prototype III) can easily transform kinetic energy into electrical power via the vibration-based electromagnetic system when walking at a normal speed. Consequently, electrical energy reaching 0.25 W is generated from the energy harvester (prototype III) by extracting kinetic energy produced by walking.


2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


2014 ◽  
Vol 525 ◽  
pp. 342-345
Author(s):  
Yan Zhao ◽  
Shan Shan Liu ◽  
Yu Feng Li

The piezoelectric power generating device can convert the vibration energy into electrical energy in vehicular environment. So it can provide energy for electronic components. Firstly, the mathematical model of road-vehicles-piezoelectric device coupled vibration was established under the random road excitation. Then vibration simulation analysis of the established model was made. The acceleration and spectrum of the vehicles body and its connection with the suspension were researched under B-class. The car body vibration is low-frequency vibration. Further studies shows that expanding the speed range and changing the roads level almost have no effect on the natural frequency of vehicles body vibration. Secondly, in order to make the maximum generating capacity, the influences of cantilever beam parameters have on its nature frequency were researched. The research results provide basis for parameters design in cantilever beam.


2018 ◽  
Vol 18 (3) ◽  
pp. 920-933 ◽  
Author(s):  
Suyoung Yang ◽  
Sung-Youb Jung ◽  
Kiyoung Kim ◽  
Peipei Liu ◽  
Sangmin Lee ◽  
...  

In this study, a tunable electromagnetic energy harvesting system, consisting of an energy harvester and energy harvesting circuits, is developed for harnessing energy from low-frequency vibration (below 10 Hz) of a bridge, and the harvesting system is integrated with a wireless fatigue crack detection sensor. The uniqueness of the proposed energy harvesting system includes that (1) the resonance frequencies of the proposed energy harvester can be readily tuned to the resonance frequencies of a host structure, (2) an improved energy harvesting efficiency compared to other electromagnetic energy harvesters is achieved in low-frequency and vibration, and (3) high-efficiency energy harvesting circuits for rectification are developed. Furthermore, the developed energy harvesting system is integrated with an on-site wireless sensor deployed on Yeongjong Grand Bridge in South Korea for online fatigue crack detection. To the best knowledge of the authors, this is the very first study where a series of low-frequency vibration energy harvesting, rectification, and battery charging processes are demonstrated under a real field condition. The field test conducted on Yeongjong Grand Bridge, where fatigue cracks have become of a great concern, shows that the proposed energy harvester can generate a peak voltage of 2.27 V and a root mean square voltage of 0.21 V from 0.18-m/s2 root mean square acceleration at 3.05 Hz. It is estimated the proposed energy harvesting system can harness around 67.90 J for 3 weeks and an average power of 37.42 µW. The battery life of the wireless sensor is expected to extend from 1.5 to 2.2 years. The proposed energy harvesting circuits, composed of the AC–DC and boost-up converters, exhibit up to 50% battery charging efficiency when the voltage generated by the proposed energy harvester is 200 mV or higher. The proposed boost-up converter has a 100 times wider input power range than a conventional boost-up converter with a similar efficiency.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


Sign in / Sign up

Export Citation Format

Share Document