Toward in situ x-ray diffraction imaging at the nanometer scale

Author(s):  
Nadia A. Zatsepin ◽  
Ruben A. Dilanian ◽  
Andrei Y. Nikulin ◽  
Brian M. Gable ◽  
Barry C. Muddle ◽  
...  
2021 ◽  
Vol 28 (2) ◽  
pp. 550-565 ◽  
Author(s):  
David Yang ◽  
Nicholas W. Phillips ◽  
Kay Song ◽  
Ross J. Harder ◽  
Wonsuk Cha ◽  
...  

Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380–410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.


2010 ◽  
Vol 43 (5) ◽  
pp. 1036-1039 ◽  
Author(s):  
J. Wittge ◽  
A. N. Danilewsky ◽  
D. Allen ◽  
P. McNally ◽  
Z. Li ◽  
...  

The nucleation of dislocations at controlled indents in silicon during rapid thermal annealing has been studied byin situX-ray diffraction imaging (topography). Concentric loops extending over pairs of inclined {111} planes were formed, the velocities of the inclined and parallel segments being almost equal. Following loss of the screw segment from the wafer, the velocity of the inclined segments almost doubled, owing to removal of the line tension of the screw segments. The loops acted as obstacles to slip band propagation.


2011 ◽  
Vol 208 (11) ◽  
pp. 2499-2504 ◽  
Author(s):  
A. N. Danilewsky ◽  
J. Wittge ◽  
A. Hess ◽  
A. Cröll ◽  
A. Rack ◽  
...  

2018 ◽  
Vol 25 (4) ◽  
pp. 1229-1237
Author(s):  
Yuki Takayama ◽  
Yuki Takami ◽  
Keizo Fukuda ◽  
Takamasa Miyagawa ◽  
Yasushi Kagoshima

Coherent X-ray diffraction imaging (CXDI) is a promising technique for non-destructive structural analysis of micrometre-sized non-crystalline samples at nanometre resolutions. This article describes an atmospheric CXDI system developed at SPring-8 Hyogo beamline BL24XU for in situ structural analysis and designed for experiments at a photon energy of 8 keV. This relatively high X-ray energy enables experiments to be conducted under ambient atmospheric conditions, which is advantageous for the visualization of samples in native states. The illumination condition with pinhole-slit optics is optimized according to wave propagation calculations based on the Fresnel–Kirchhoff diffraction formula so that the sample is irradiated by X-rays with a plane wavefront and high photon flux of ∼1 × 1010 photons/16 µmø(FWHM)/s. This work demonstrates the imaging performance of the atmospheric CXDI system by visualizing internal voids of sub-micrometre-sized colloidal gold particles at a resolution of 29.1 nm. A CXDI experiment with a single macroporous silica particle under controlled humidity was also performed by installing a home-made humidity control device in the system. The in situ observation of changes in diffraction patterns according to humidity variation and reconstruction of projected electron-density maps at 5.2% RH (relative humidity) and 82.6% RH at resolutions of 133 and 217 nm, respectively, were accomplished.


2011 ◽  
Vol 44 (3) ◽  
pp. 462-466 ◽  
Author(s):  
Fabio Masiello ◽  
Tamzin A. Lafford ◽  
Petra Pernot ◽  
José Baruchel ◽  
Dean S. Keeble ◽  
...  

The behaviour of ferroelectric domains at high temperatures near the Curie temperature in a periodically poled rubidium-doped potassium titanyl phosphate crystal (Rb:KTP) has been studied by Bragg–Fresnel X-ray diffraction imagingin situusing a compact coherence-preserving furnace. The development and partial disappearance of the inverted domain structure as the temperature increases has been successfully modelled, and is explained by invoking a built-in electric field produced under heating in a low vacuum by out-diffusion of atoms from the sample.


2016 ◽  
Vol 23 (5) ◽  
pp. 1241-1244 ◽  
Author(s):  
Wonsuk Cha ◽  
Wenjun Liu ◽  
Ross Harder ◽  
Ruqing Xu ◽  
Paul H. Fuoss ◽  
...  

A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible within situsample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.


JOM ◽  
2013 ◽  
Vol 65 (9) ◽  
pp. 1208-1220 ◽  
Author(s):  
Richard L. Sandberg ◽  
Zhifeng Huang ◽  
Rui Xu ◽  
Jose A. Rodriguez ◽  
Jianwei Miao

2011 ◽  
Vol 318 (1) ◽  
pp. 1157-1163 ◽  
Author(s):  
A.N. Danilewsky ◽  
J. Wittge ◽  
A. Croell ◽  
D. Allen ◽  
P. McNally ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document